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INTRODUCTION 

The motivation for this study stems from an interest in the quantita

tive methods used by depreciation engineers to estimate the probable 

service life of industrial property. While it is now generally understood 

that an accurate estimate of service life is indispensible to the applica

tion of most methods of computing depreciation, this was not always the 

case. A variety of schemes were once used to charge the cost of depre

ciable plant to expense without regard to the service life of the 

property. Under the retirement method, for example, the cost of a plant 

asset was first charged to a plant account and then charged to expense at 

the time of retirement. An alternative treatment that supposedly kept the 

property in 100% operating condition was to charge a plant account with 

the cost of the original plant asset, but replacements were charged to 

expense. Since depreciation methods such as these did not aim to distrib

ute the cost of an asset over its productive life, there was little need 

for making engineering estimates of the probable service life. 

Shortly after the turn of the twentieth century these earlier methods 

were gradually abandoned and full depreciation accounting became the 

accepted method of charging the cost of depreciable plant to expense. The 

usual accounting practice today in industries using long-lived assets is 

to allocate a portion of the investment in depreciable plant to each 

accounting period during the life of the plant. Thus, the cost of the 

depreciable property that is charged to a fixed asset account is viewed as 

a prepaid expense to be amortized over the accounting periods related to 

its use. 
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The Interstate Commerce Commission (ICC) played an important role in 

promoting acceptance of the allocation of cost concept and the age-life 

relationship in depreciation accounting. As early as 1907, full deprecia

tion accounting was prescribed by the ICC for steam railroads. In 1910, 

the jurisdiction of the ICC was broadened to include telephone, telegraph; 

and cable companies that were engaged in interstate message communications. 

Shortly thereafter, accountants of the ICC began work on a Uniform System 

of Accounts for Telephone Companies that included definitions and rules 

for depreciation accounting. It was not until January 1, 1913, however, 

that the work was completed and the accounting system became mandatory. 

According to the Depreciation Subcommittee of the National Association of 

Regulatory Utility Commissioners (52, p. 10), the rules with respect to 

depreciation included the following statement: 

"... depreciation expense should be designed to recover 
the cost of plant over its estimated life in the case of 
individual units, and over the estimated average service life 
in the case of group properties." 

It is reported by Nash (49, pp. 4-5) that a more comprehensive accounting 

system was adopted by the ICC in 1914, wherein the program with respect to 

depreciation was defined as follows: 

"We therefore find that annual depreciation charges shall 
be computed at such percentage rates of the ledger value of 
the unit of property in question that the service value, as 
hereinbefore defined, may be distributed under the straigjht-
line method in equal annual charges to operating expenses 
during the estimated service life of the unit. Annual charges 
so computed shall be reduced to a monthly basis by dividing by 
12." 

Thus, the introduction in 1913 of the Uniform System of Accountants 

required by the ICC under the Mann-Elkins Act of 1910, firmly established 

the propriety of depreciation accounting lAlch, in turn, created a general 
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need for the development of sound methods of estimating the probable 

service life of industrial property. 

To the uninitiated it mi^t seem that an estimate of probable service 

life could be obtained by merely calculating the average age of plant 

retired in recent years. But with a little reflection it becomes apparent 

that the problem is not this simple, since the average age of plant 

retired is typically lower than the true average service life. For 

example, if we calculate the average age at death of the male population 

bom in 1920 who have already passed on, we will surely understate the 

average life of all males bom in 1920, since it is reasonable to assume 

that a majority of them are still alive. 

With the exception of short lived property such as motor vehicles, 

office furniture, and communication equipment, most classes of industrial 

property have not been in service long enough to provide a history of 

completed generations. Consequently, it is necessary to devise methods of 

estimating probable service life from a series of vintages that are only 

partially retired. The problem is further complicated by the fact that 

many firms do not maintain plant accounting records that reveal the age 

distribution of plant still in service. In this case, estimates of the 

probable service life must be derived without any knowledge of the age of 

plant retirements at the time of their retirement. 

While most of the common methods of computing depreciation require an 

estimate of service life, some methods also require an estimate of life 

expectancy ̂ ich is the period of time extending from an observation age 

to the forecasted date of retirement. This information, which is also 

needed for depreciation reserve studies, can be obtained from a 
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mathematical formulation of the life characteristics of the property under 

review. The mathematical expressions used to describe these character

istics are known as "survival functions" which are derived by the depre

ciation engineer from the application of various life analysis techniques.^ 

The purpose of the present study is to investigate the possibility of 

improving the estimation procedure currently employed in the application 

of a sub-set of the class of life analysis techniques known as the 

actuarial methods. This investigation will focus on the annual rate (or 

retirement rate) method of life analysis and the statistic used to 

estimate the hazard rate for each age-interval. 

The term "life analysis" has traditionally been used by depreciation 
engineers to describe the application of certain analytical procedures to 
plant accounting records containing the life history of various classes of 
physical property. The end result of such an analysis is a mathematical 
description of the age distribution of plant retirements measured in units 
of realized service. The term "life estimation" is also used by the 
depreciation engineer when attention is given to predicting the expected 
remaining service life of property units still exposed to the forces of 
retirement. The two terms are not synonymous; life analysis is concerned 
with history and life estimation is concerned with the future. The present 
study is limited to a consideration of life analysis. 
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RELATED CONCEPTS 

Once the need for service life estimates had been established, it was 

soon recognized that such estimates could be obtained by applying the 

actuarial procedures developed for investigating human mortality to the 

mortality experience of physical property. But these procedures (used 

extensively in life insurance work) can only be applied to plant accounting 

records that reveal the age of a plant asset at the time of its retirement. 

In other words, each property unit must be identifiable by date of instal

lation and age at retirement. This limitation encouraged the development 

of a class of life analysis techniques known as the "semi-actuarial" 

methods. 

Semi-actuarial Methods of Life Analysis 

In 1922, Cyrus G. Hill (34) proposed a method for analyzing the life 

experience of various classes of telephone plant when "... the age of 

the plant retired at any time cannot be told from a casual inspection of 

the books." In other words, the available property records reveal the 

annual gross additions and annual plant or account balances (i.e., plant 

in service) with no indication of the age of plant retirements. 

The Hill method is a trial and error procedure that attempts to 

duplicate the most recent plant balance of a plant account by distributing 

the annual gross plant additions over time according to an assumed life 

table or survivorship function. The constructed or computed plant balance 

is simply the accumulation of each gross plant addition multiplied by the 

indicated proportion surviving (from the assumed life table) at its 

attained age. If the mortality experience of the property had, in fact. 
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followed the life characteristics described by the assumed survivorship 

function then the computed plant balance would be equal in magnitude to 

the amount of plant actually in service. On the other hand, if the 

selected survivorship function does not generate adequate retirements 

(i.e., the computed balance is greater (less) than the actual balance), 

then the procedure would be repeated using a shorter (longer) average 

service life with a survivorship function of the same dispersion. 

An obvious drawback in Hill's method is that every survivorship 

function has an average service life that will produce a single computed 

balance equal in magnitude to the corresponding actual plant balance. 

Furthermore, since the derived average service life is a function of the 

selected dispersion, an incorrect dispersion will introduce an error in 

the estimated average service life. 

In 1943, a variation of the Hill method was presented by the National 

Association of Railroad and Utilities Commissioners (50) in a report of 

the committee on depreciation. While the principle of the suggested 

procedure (described as the "Indicated Survivors Method") is identical to 

Hill*s, the NARUC method attempts to duplicate a series of plant balances 

over a few prior years instead of limiting the analysis to the most recent 

plant balance in the account. The advantage gained from the use of 

multiple balances is that it may provide a clue to the probable type of 

dispersion. The claimed advantage is questionable, however, since the 

selection criterion is simply a visual inspection of how well the series 

of computed balances conforms to the series of actual balances. 

In 1947, Alex E. Batihan (5) presented a paper at the American Gas 

Association-Edison Electric Institute National Accounting Conference that 
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described a method for analyzing mass property accounts (i.e., aged 

retirements are not available) that would provide an estimate of both 

dispersion-type and average service life. The Bauhan procedure (known as 

the "Simulated Plant Balances Method") is a variation of the Indicated 

Survivors Method that incorporates a minimum sum of squares criterion in 

the selection of an appropriate dispersion. 

At the same conference, Henry R. Whiton (63) and Paul H. Jeynes (37) 

each presented papers that outlined two additional procedures for esti

mating dispersion-type and average service life from mass mortality data. 

In brief, the Whiton method suggested matching cumulative retirements and 

the Jeynes method suggested matching annual retirements derived from a 

record of annual net additions and a theoretical renewals function. These 

two methods have been named the "Simulated Plant Cumulative Retirements 

Method" and the "Simulated Plant Indicated Renewals Method", respectively. 

Â more recent development that has attracted a certain amount of 

attention is the "Simulated Plant Period Retirements Method". This 

procedure was originally suggested by Willi am D. Garland (24) in a paper 

presented at the 1968, American Gas Association-Edison Electric Institute 

National Accounting Conference. Unlike the earlier methods. Garland's 

approach develops a "best-fitting" average service life for a selected 

survivorship function by seeking a sum of differences between actual, and 

cong)uted retirements approximating zero over a specified time period.^ 

Althougih the Period Retirements Method is a relatively new innovation, it 

^An earlier version of the Period Retirements Method was presented by 
Garland (23) at the 1967, A.G.A.-EEI National Accounting Conference. The 
earlier version used a sum of squares criterion. 
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and the Balances Method are probably the most widely used of the above 

techniques. 

In view of the apparent similarity in the methods just described, 

they have become known (collectively) as the "Simulated Plant-Record" or 

"SPR" method- As this name implies, the SPR method is simply a trial and 

error procedure that attempts to duplicate (i.e., simulate) some portion 

of a plant accounting record that may or may not permit age identification 

of plant retirements. The method, however, is usually associated with 

mass mortality data. 

Actuarial Methods of Life Analysis 

The actuarial methods of life analysis differ from the semi-actuarial 

methods in two important respects. First, the actuarial methods require 

plant accounting records that provide complete age identification of 

current and past retirement experience; each unit of property must be 

identifiable by date of installation and age at retirement. Secondly, the 

actuarial methods are not a trial and error procedure; they are a proce

dure that involves two distinct steps, both of which can be approached in 

several different ways. 

The first step involves a systematic treatment of the available data 

for the purpose of constructing a life table.^ The theory and application 

of the life table is a well-known topic in the field of statistics. It 

has many applications in various areas of research where birth, death, and 

illness may take place. According to Chiang (11), the earliest life 

^The format of a life table is given in Table 1, p. 32. 
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tables date as far back as the seventeenth century; Halley*s life table 

for the City of Breslau, published in the year 1693, apparently contained 

most of the columns in use today. The subject matter, however, is by no 

means limited to human mortality. Zoologists, biologists, physicists, 

engineers, and investigators in other fields have found the life table a 

valuable means of presenting mortality data. 

The construction of a life table for depreciation applications 

usually involves one of at least five available methods. Winfrey (66, 

pp. 17-18) describes these as: the individual-unit method; the original-

group method; the composite original-group method; the multiple original-

group method; and the annual-rate method. Of these five methods, only 

the annual-rate method will produce a complete life table. The other 

methods produce an abbreviated table (i.e., one that does not contain all 

of the columns normally associated with a life table) that minimally 

contains an estimate of the cumulative proportion surviving. 

The individual-unit method is the least sophisticated of all the 

methods since it only considers units that have been retired from service; 

it does not give any weight to the units remaining in service at any given 

age. The cumulative proportion surviving is obtained by arranging the 

retirements during a given year or series of years in ascending order 

according to the age of each unit at its retirement. The sum of all such 

retirements is taken as an estimate of the units exposed to retirement at 

age zero. The number of units subject to retirement at the beginning of 

each successive age-interval is easily obtained by subtraction and the 

ratio of these exposures to the sum of all retirements provides an 

estimate of the cumulative proportion surviving. Unlike the other methods. 
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this method will always produce a life table extending to zero percent 

(or proportion) surviving at maximum life. 

The original-group method of constructing a life table gives wei^t 

to both the retirements and survivors of the property units installed as a 

group or vintage in a given calendar year. The method does not consider 

more than a single vintage, however, which will result in a censored life 

table (i.e., non-zero percent surviving in the last tabulated age-interval) 

if the original group is not fully retired. Clearly, the ratio obtained 

by dividing the number of units installed at age zero into the number of 

units surviving at the beginning of each successive age-interval will 

generate the cumulative proportion surviving. 

The composite original-group method is a variation of the original-

group method that can be used when the number of units in a single vintage 

is deficient or the cumulative proportion surviving is extremely erratic. 

The method simply combines the retirements and survivors of equal ages 

from two or more vintages into a composite group which is treated as a 

single original-group. Thus, the cumulative proportion surviving is cal

culated on the basis of the combined total of the survivors from all 

vintages included in the composite group. 

The multiple original-group method is also a variation of the 

original-group method wherein the cumulative proportion surviving at each 

age-interval is obtained from a different vintage. Thus, while the 

original-group method considers a single vintage over a series of observa

tion dates, the multiple original-group method considers a series of 

vintages at a single observation date. Estimates of the cumulative 

proportion surviving that are obtained using this method are typically 
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irregular because successive vintages seldom exhibit an equal proportion 

surviving at equal ages. This is not a serious problem, however, since 

most life tables require some form of graduation. 

The annual-rate method is the most sophisticated of the five methods 

under review and will be used in this study to construct the observed life 

table. The mechanics of the annual-rate method require the calculation of 

a series of ratios obtained by dividing the number of units surviving at 

the beginning of an age-interval into the number of units retired during 

the same interval. This important ratio (or set of ratios) is variously 

known as the hazard rate, the rate of mortality, the force of mortality, 

the conditional proportion retired, the retirement rate, or the retirement 

ratio. Having calculated this ratio for each age-interval, the cumulative 

proportion surviving is obtained by multiplying the conditional proportion 

retired for each age-interval by the proportion surviving at the beginning 

of that age-interval and subtracting the product from the proportion 

surviving at the beginning of the same interval. The annual-rate method 

can also be applied to multiple vintages by combining the retirements and/ 

or survivors of like ages from each of the vintages included in the 

analysis. The data selected under either the composite original-group 

method or the annual-rate method may be for a specified "additions era" or 

for a specified "retirements era". The use of an additions era means that 

the analysis is restricted to the record of retirements and survivors from 

plant added during the years included in the selected era. The use of a 

retirements era means that the analysis is restricted to the retirement 

activity of all vintages represented by survivors at the beginning of the 

selected era. 
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The construction of a life table by any of the above methods has been 

identified as the first step in applying the actuarial methods of life 

analysis. The second step Involves graduating the observed life table and 

fitting the smoothed series to a family of survival functions. The 

functions used are either empirically derived or otherwise known to be 

representative of the mortality characteristics encountered in the field 

of study in which they are being applied. 

Graduation of an observed life table can be justified from both a 

theoretical and a practical point of view. According to the mathematical 

theory of probability, the irregularities observed in a life table of 

physical property can be attributed to errors of observation or chance 

fluctuations that arise because of the limited and necessarily finite 

extent of the observations. If it were possible to secure unlimited data, 

it is believed that the irregularities would become insignificant. Thus, 

the process of graduation can be viewed as a technique for estimating the 

series of true rates of mortality that is assumed to have given rise to 

the irregular series of observed probabilities. 

As a practical matter, life tables of physical property often contain 

irregularities due to events that are unlikely to occur again at the same 

ages or at the same relative frequency. A major accident, for example, or 

a management decision to retire a certain class of property can produce 

irregular variations in a life table that are not representative of the 

underlying forces of mortality. Thus, the graduation process is frequently 

used to remove irregularities which the depreciation engineer has reason to 

believe are not a feature of the true, underlying rates of mortality. 

Graduation techniques are also used to extend a censored life table to zero 
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percent surviving. A censored life table must be extended before the 

probable average service life can be computed. 

Several methods have been developed to graduate an observed series. 

These methods are classified by Miller (48) as follows: 

(i) The graphic method. In this method, the observed values are 

suitably plotted on graph paper and among them a smooth, con

tinuous curve is drawn as the basis of the graduated series, 

(ii) The interpolation method. In this method, the data are com

bined into age groups and the graduated series is obtained 

by interpolation between points determined as representative 

of the groups. 

(iii) The adjusted-average method. In this method, each term of 

the graduated series is a weighted average of a fixed number 

of terms of the observed series to which it is central. 

(iv) The difference-equation method. In this method, the gradu

ated series is determined by a difference equation derived 

from an analytic measure of the relative emphasis to be 

placed upon fit and smoothness. 

(v) Graduation by mathematical formula. In this method, the 

graduated series is represented by a mathematical curve 

fitted to the data. 

Of these methods, the graphic approach and graduation by mathematical 

formula are the most widely used in the field of depreciation. The graphic 

method is usually applied to the cumulative proportion surviving and may or 

may not involve the use of standard curves, such as the Iowa-Type survivor 

curves. If the observed data are sufficiently smooth and not extremely 
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censored, a freehand curve can be drawn among the plotted points that will 

be satisfactory for most applications. The use of type or standard curves 

offers a refinement to the graphic method that removes much of the subjec

tivity that is inherent in drawing a freehand curve. 

The standard curves developed by Kurtz (44) and Winfrey (66) at the 

Iowa Engineering Experiment Station (now known as the Engineering Research 

Institute) are, by far, the most widely used. These so-called Iowa-Type 

Curves were originally presented in Bulletin 103 (67) as a set of 13 

generalized retirement frequency curves that were obtained from an analysis 

of the retirement experience of 65 property groups.^ The original set of 

13 curves was later modified slightly and expanded to include 5 additional 

curves that were developed by Winfrey (66) from an analysis of 124 property 

groups which included the 65 groups contained in the earlier study. The 

Iowa-Type Curves now number 22 which includes 4 origin-moded curves 

developed by Couch (14). 

The Iowa Curves are mathematically described in terms of the Pearson 

frequency curve family and are classified according to the location of the 

mode of the retirement frequency curve relative to the average life as well 

as the maximum height of the modal ordinate. The set now includes seven 

symmetrical, five right-modal, six left-modal, and four origin-modal curves. 

The mathematical form of the symmetrical frequency curves is given by 

t^ .m 
y " yod - %2 ) 

"^e first 52 property groups contained in this study were grouped 
initially into 7 type curves and published by Kurtz (44) in 1930. 
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which is a Pearson type II. The constants in this equation are yo> a, and 

m. The variable t represents age (in units equal to 10 percent of average 

life) measured from the average life ordinate. The right-modal and left-

modal curves were obtained by separating the observed frequencies into a 

major and a minor constituent curve, each of which was fitted to a Pearson 

type I and summed to obtain the total frequency. The resulting curves are 

described by a general equation of the form 

where Y^, A^, A2, M2, y^, a^, 33, mj, and mg are constants. The 

origin-modal curves (except for the group classified as Oj) were obtained 

through trial and error adjustment of a Pearson type VIII curve which is 

given by the general equation 

y = 

The group classified as type Oj^ are represented by a straight line having 

an ordinate value of 5.0 for all values of t between -10 and +10. 

Since the cumulative proportion surviving is the most common and con

venient series to graduate using the graphic method, the Iowa-Type Curves 

were numerically integrated to produce equivalent survivor curves that 

have been drawn on sheets of graph paper to an appropriate scale. Thus, 

an observed series is easily graduated by plotting the cumulative propor

tion surviving on a sheet of transparent graph paper and overlaying each 

sheet of survivor curves with the sheet of plotted data. The type curve 
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and average life which best fit the data are determined by visual 

inspection. This procedure has also been computerized using a minimum sum 

of squares or a miniimTm algebraic sum of the differences between the data 

points and the fitted curve as the selection criterion. 

The Iowa-Type Curves are not, however, the only type curves available 

for life studies of industrial property. In 1947, Kimball (42) introduced 

the so-called h-System which was formulated by Gumbel (31) in 1933 as a 

system of survival functions for human mortality. Unlike the Iowa Curves 

which were empirically derived from an analysis of actual retirement data, 

the h-System is described by a single mathematical function that is 

derived from a theoretical consideration of the parametric form of a 

truncated normal probability distribution.^ The resulting retirement 

frequency curves are left-moded, however, which has possibly discouraged a 

more widespread use of the system. 

Depreciation personnel of the Bell Telephone System have, for many 

years, used the so-called Concertz-Hakeham formula to graduate an observed 

life table. This formula was also developed from life studies of human 

mortality and later applied to the retirement experience of physical 

property. It is reported by Jordan (38) that in 1825, Benjamin Gompertz, 

in a celebrated actuarial paper, examined the effect of assuming "the 

average exhaustion of a man*s power to avoid death to be such that at the 

end of equal infinitely small intervals of time he lost equal portions of 

his remaining power to oppose destruction which he had at the commencement 

of these intervals." In other words, Gompertz assumed that man's power to 

complete derivation of the h-System is contained in Appendix A. 
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resist death decreases at a rate proportional to itself, which is equiva

lent to the assumption that the force of mortality increases in geometric 

progression. This can be stated mathematically by letting 

X(t) = Bc^ 

where A(t) is the hazard function, B and c are constants, and t is age 

measured in units of time. Gompertz*s expression for the survivorship 

function can be derived using the well-known functional relationship 

between the hazard function and the survivorship function.^ Thus, if 

A(t) = ̂  X(x) dx = ̂  Be* dx = (c^ - 1) 

= -(c^ - 1) In g = -In g^ ^ 

g 
where In g = - ^ , then the survivorship function S(t) is 

c'-l t 
S(t) = 

This expression, however, is usually written as 

S(t) = kg 

where k = 1/g. 

^Infra, p. 38. 
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In presenting his formula, Gompertz, as quoted by Jordan (38, p. 25), 

stated: 

"It is possible that death may be the consequence of two 
generally coexisting causes: the one, chance, without previous 
disposition to death or deterioration; the other, a deterioration, 
or increased inability to withstand destruction." 

In deriving his law of mortality, however, Gompertz considered only the 

second of these causes. In the year 1860, William Makeham combined the 

two causes in a formula that turned out to be a remarkable improvement on 

Gompertz's assumption. The effect of the first cause, chance, would be 

the addition of a constant term to the Gompertz hazard function. Hence, 

Makeham's assumption may be written as 

Makeham's expression for the survivorship function can be derived in the 

same manner as the Gompertz expression. Thus, if 

X(t) = A + Be' . 

A(t) 

, t 1 c'—1 - In s - In g 

g 
ïAere In x = -A and In g = - ^ , then the survivorship function S(t) is 

S(t) . s' + In 8"= 

Again, this expression is usually written as 
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t c' S(t) = ks g 

where k = 1/g. 

Makeham's contribution did not, however, detract from the usefulness 

of Gompertz's formula; both of these laws possess properties that are 

desirable for practical applications. Gompertz's law was employed in the 

construction of the 1937 Standard Annuity Table, and Hakeham's law was 

used in connection with the Commissioners Standard Ordinary Mortality 

Table and also with the 1949 Annuity Table. 

It is not known exactly how these laws came to be used by those 

working with life analysis of industrial property.^ But at some point in 

time, the Makeham law, as it is called by actuaries, was renamed the 

Gompertz-Makeham formula by those in the life analysis field. Presumably, 

this dual reference was intended to give credit to both authors. 

Since each of these formulas contains a number of unspecified 

parameters, each gives rise to an infinite number of different survival 

functions. These laws of mortality thus define only the form of the 

mathematical functions to be assumed and do not yield numerical measure

ments of icortality until appropriate values are chosen for the parameters. 

Although both Gompertz's and Makeham*s laws appear well-suited to life 

insurance applications, several researchers including Winfrey (66, p. 40) 

have found that neither the Gon^ertz formula nor the Makeham formula 

Winfrey (66, p. 8) reports that to his knowledge, the first printed 
reference to the use of the Gompertz-Makeham formula in dealing with 
retirement data of physical property was in testimony presented in 1928 by 
the American Telephone and Telegraph Company before the Interstate 
Commerce Commission in Docket No. 14,700. 
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expresses a totally satisfactory mathematical law for industrial 

properties. 

In the early 1930*s, Lawrence S. Patterson, of the New York State 

Public Service Commission, developed a system of generalized survival 

functions that became known as the Patterson System (42). The mathe

matical form of the survivorship function described by this system is 

given by 

S(t) = 1 - t /2, 

= (2 - t*)/2. 

0 j< t £ 1, 

1 < t < 2, 

where t denotes the age in percent of average service life, and n is a 

parameter to be determined. The variance of the generalized retirement 

frequency curve of the above system (with average service life equal 

unity) can be shown to be 

a2 = 2/[(n + l)(n + 2)] . 

Thus, the Patterson System represents a two-parameter family of survivor

ship functions, with the average service life acting implicitly as one 

parameter, and the index n determined by the variance of the generalized 

retirement frequency curve, serving as the second parameter. According 

to Kimball (42), the Patterson System is oversimplified for some purposes, 

but has been found useful for turnover-cycle computations. This is not 

surprising, however, since all of the retirement frequency distributions 

contained in this system are symmetrical. 
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While each of the above type curve systems is adaptable to the 

graphic method of graduation, some may also be used in the process of 

graduation by mathematical formula. In the formula method of graduation» 

the graduated series is represented by a mathematical function fitted to 

the data. The application of the method involves two steps: 

(i) the choice of the form of function to represent the graduated 

series; and 

(ii) the estimation of the parameters of the chosen function. 

Mathematical functions chosen for this purpose are usually continuous, 

differentiable, and involve relatively few parameters. A second or third 

degree polynomial, the normal probability distribution, and the Gompertz 

formula are examples of such functions. While tests applicable to the 

data are sometimes helpful, the selection of an appropriate function is 

largely a matter of experience. The parameters of the chosen function are 

usually estimated by the method of moments, least squares, maximum likeli

hood, or some variation of them. 

The formula method of graduation can be used to smooth and extend 

either the observed retirement frequency distribution, the conditional 

proportion retired, or the cumulative proportion surviving. The process 

of graduating an observed retirement frequency distribution by formula is 

essentially the problem considered by Kurtz and Winfrey in the development 

of the Iowa-Type Curves. Their investigation, as noted earlier, resulted 

in selecting the Pearson frequency curve family to represent the graduated 

series, while the parameters of the chosen function were estimated by the 

method of moments. Winfrey (66) later investigated the GramrCharlier 

series as an alternative to the Pearsonian system, using both the method of 
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ooments and the method of least squares to estimate the parameters of the 

series. It is reported by Winfrey (66, p. 76), however, that . . the 

author had little success in getting a direct fit with (the Gram-Charlier 

series) except for the symmetrical frequency curves." 

A related approach to the problem of frequency graduation is discussed 

by Buehler (9) who offers a formula for estimating the parameters of a 

function <j)(x) = 6i<^i(x) + . . . + P^4>jjj(x) in such a way that ({> has approxi

mately some specified distribution g(4>) which, for example, could be a 

normal distribution. This approach is based on the work of Hammersley and 

Morton (32) who investigated the function *(x) = a + gx as a transformation 

of observed values x grouped in a frequency distribution. Although Krane 

(43) draws freely on Buehler's method in working with the hazard function, 

this author is not aware of any research in the field of life analysis 

that has used Buehler's technique to graduate a retirement frequency 

distribution. 

The Gompertz-Makeham formula is the function most often chosen to 

represent a graduated series of the cumulative proportion surviving. There 

are differences of opinion, however, as to the merits of graduating this 

series vis-a-vis the retirement frequency distribution or the conditional 

proportion retired. Benson (in Ref. 51, p. 78), for example, is opposed to 

mathematically graduating either the cumulative proportion surviving or 

the retirement frequency distribution for the following reasons: 

"The Gompertz-Makeham equation used by life insurance actu
aries and the modified Gonçertz-Makeham equation used by the 
Bell System Companies are open to the serious objection that 
the manipulative treatment of the data by the successive multi
plication of 'observed' survival ratios to obtain an 'observed' 
life table, before the fitting process can be begun, destroys 
to a large extent the independence of the individual observations. 
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Furthermore, the necessity of having to assume an end point and, 
in many cases, a value for the negative logarithmic differential 
at age 0 requires the introduction of judgment at an early stage 
in the process. This is especially objectionable when the data 
end considerably short of the ultimate limit of life." 

"The Kurtz method of fitting Pearsonian frequency curves to 
retirements computed from 'observed* life tables uses data even 
further removed from Independence than does the Gompertz-Makeham 
method." 

In defense of its practice, the Bell Telephone System (2, Chapter 2, 

p. 31) has taken the following position: 

". . . it is sometimes suggested that, before graduating, 
the Depreciation Engineer should plot the observed survival 
rates (or the mortality rates which are the complements thereof) 
and graduate them, first changing or relocating any points which 
seem to be out of line. Otherwise, so the argument goes, unless 
this is done, the entire remaining portion of the observed life 
table could be thrown out of line because of some unusual happening 
in a single age Interval. The Bell System position on the other 
hand is that the future life characteristic . . . can best be 
estimated with actual past experience as a guide. To the extent 
that this past experience was unusual, the Depreciation Engineer 
can temper his estimates accordingly. But obviously he needs to 
know what It actually was regardless of whether, or to what 
extent, it appeared to be abnormal. Otherwise, he would be hope
lessly misled by a series of 'normalized' life Indications." 

The Depreciation Committee of the American Gas Association and the 

Depreciation Accounting Committee of the Edison Electric Institute (1, p. 

40) have (perhaps wisely) avoided the controversy by taking the following 

stand: 

"In passing it may be noted that in the past there has been 
some spirited controversy over the contention by some analysts 
that the fitting of a smooth curve to retirement ratios was 
superior to fitting the percent survivor stub curve. The consen
sus at the present time Is that neither is superior to the other. 
One can sometimes obtain quite different mortality curves by 
these two methods - from the same set of data." 

The National Association of Regulatory Utility Commissioners (52, p. 

117) has summarized most of the arguments advanced in favor of graduating 

the conditional proportion retired as an intermediate step in the process 
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of obtaining a smooth survivorship function. According to the Association, 

the advocates of this method contend: 

(1) that retirement ratios are the most Independent since they 

are nearest to the raw data; 

(11) that the retirement ratio at one age need not necessarily 

influence those at other ages, as contrasted with the chain 

relationship of the retirement frequency distribution or 

the cumulative proportion surviving where each element of 

the series depends on all those which have gone before; 

(ill) that no fundamental law of mortality characteristics need 

be assumed beyond that of the elementary one that the older 

property is, the more likely it Is to be retired. 

(iv) that experience has shown that a simple type of equation 

can be used to describe the retirement ratio curve, and 

that therefore the data can be allowed to dictate the form 

of this equation; and 

(v) that consequently the mathematical procedure is simpler 

than in the other actuarial methods. 

The function most often chosen to represent a graduated series of the 

conditional proportion retired is a polynomial of the form 

X(t) = Bo + Pit + GzcZ + . . . + B^t° . 

Experience has shown, however, that it is rarely necessary to use a poly

nomial of greater than third degree (52, p. 118). The parameters of this 

function are usually estimated by the method of least squares or by Fisher's 
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adaptation of the orthogonal polynomials of Tchebycheff (50, p. 248). 

One of the less obvious advantages to be gained from graduating the 

conditional proportion retired stems from an important statistical 

property of the data. It is well-known (68, p. 95) that the variance of 

the conditional proportion retired is different for each age-interval, 

which suggests estimating the parameters of the assumed hazard function by 

weighted least squares. A potential difficulty, however, is that estimates 

of the hazard function are based on observed conditional probabilities and 

there is clearly some correlation among these since the survivors of the 

age-interval constitute the sample size for the (k+1)^^ age-interval. 

But it has been shown by Chiang (11) that the covariance between the 

conditional proportion retired in two age-intervals is asymptotically zero 

^ich, at least in large samples, eliminates the need for estimating 

parameters by a generalized least squares approach. This property has 

allowed several researchers, including Henderson (33) and Lamp (45), to 

investigate various methods of weighting that reflect serial independence 

of the disturbance term. It should be noted, however, that zero covariance 

between the conditional proportion retired in two age-intervals does not 

establish their independence. In fact, it can be shown and has by Chiang 

(11) that the conditional proportion retired (or conditional proportion 

surviving) for two non-overlapping age-intervals are not independently 

distributed. 

While some attention has been given to methods of weighting, this 

author is not aware of any research in the field of life analysis that has 

considered the problem of selecting the best estimator of the hazard rate 

for each age-interval to be used in estimating the parameters of an assumed 
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hazard function. A logical choice is, of course, the observed conditional 

proportion retired, which is the estimator associated with the annual-rate 

method of constructing a life table. Other estimators can be derived, 

however, that may be superior to the conditional proportion retired. This 

study will undertake such an investigation which, hopefully, will lead to 

a better understanding of the mortality characteristics of industrial 

property. 
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STATEMENT OF OBJECTIVES 

It was stated earlier that graduation by mathematical formula gener

ally involves two steps: 

(i) the choice of the form of function to represent the graduated 

series; and 

(ii) the estimation of the parameters of the chosen function. 

This study is primarily concerned with step two which is quantitative in 

nature and well-suited to empirical investigation. Step one is an equally 

important consideration in the process of life analysis, but it is far more 

subjective since there is no known function that expresses a totally satis

factory mathematical description of all of the forces of retirement. This 

does not, however, detract from the importance of step two; the procedure 

used to estimate the parameters of the chosen function should be statisti

cally sound regardless of the form of the selected function. 

The procedure used to estimate the parameters of a hazard function in 

life studies of industrial property has traditionally relied on the condi

tional proportion retired as an estimate of the hazard rate for each age-

interval. This is a logical choice, however, since the conditional propor

tion retired is an estimate of the probability of retirement during an age-

interval, conditioned upon exposure to the risk or forces of retirement at 

the start of the interval. Intuition, experience, and research have also 

led to various methods of weighting the conditional proportion retired from 

which the parameters of an assumed hazard function are usually estimated 

by the method of least squares. 

Â review of the literature in other fields of investigation reveals 
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that few, if any, researchers using the methods of actuarial statistics 

rely on the conditional proportion retired (or dying) as an estimate of 

the hazard function. The statistic most often used in the biomedical 

sciences is the so-called actuarial estimate which is obtained by dividing 

the average number of survivors over a given age-interval into the number 

of retirements during the interval. The parameters of an assumed hazard 

function are then estimated by the method of least squares. It was also 

found that researchers in radiology have used the colog of the survivor 

ratio as an estimate of the hazard function. This statistic, which can be 

shown to be the maximum likelihood estimate of the hazard rate, is also 

used by actuaries in the development of annuity benefits. Thus, the fact 

that other researchers have rejected the conditional proportion retired 

suggests that it may not be the best estimate of the hazard rate for 

depreciation applications. 

The objective of this study is to derive and compare various estimates 

of the hazard rate (or hazard function) associated with the service life of 

industrial property and determine which, if any, is best for depreciation 

applications. The term "best" as used in this study is taken to mean an 

estimate of the hazard rate that consistently yields estimates of the 

parameters of an assumed hazard function that are closest to the true, 

underlying population parameters. 
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MATHEMATICAL DESCRIPTION OF THE DATA 

This section provides a mathematical description of the life table 

and a development of the probability relationships defined by the survival 

functions. The notation and functional relationships introduced in this 

section will be used in the next section to derive estimates of the hazard 

rate which, in turn, will be used to obtain estimates of the parameters of 

a hazard function. 

The Life Table 

Consider the following time axis where t^ represents a discrete point 

in time and h^ denotes an interval of time between points tj^ and t^^^: 

4 
t2 '3 tje ^ k+1 

In depreciation applications, h^ is called an "age-interval" and is 

measured from the beginning of one period of observation to the beginning 

of the next consecutive period. For practical reasons, it will be assumed 

that observations are made on December 31 such that a property unit or 

group of property units installed at time tj will have attained an age of 

t^ years at the observation date.^ We will also assume that plant 

additions and retirements are distributed uniformly throughout the year 

The measurement of rendered service in time units of a year is 
arbitrary. A unit of time less than a year (month, week, day) or units of 
production (pounds, cubic feet, gallons) could be employed with no loss of 
generality. The year has been adopted as a unit of measurement by virtue 
of its conformity to the standard accounting Interval used in depreciation 
calculations. 
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such that the average age of plant in service at the end of the year in 

which it was installed is one-half year. This assumption (which is 

equivalent to assuming that all plant additions are made on July 1) is 

known in the field of depreciation as the "half-year convention". By 

definition, therefore, the domain of t^ is restricted to the set of num

bers {0, ht 1^» 2^5, . . .}. Thus, an age-interval can be specified either 

by reference to its end points (i.e., t^ - t^^^) or by reference to its 

position relative to age zero which is a value of k. It will be shown 

later that under the assumption of fixed age-intervals, the number of units 

retired in each interval is a random variable which follows the multinomial 

distribution.^ 

The interval of time between t^ and t^^^^ (i.e., h^) is often defined 

in life studies of physical property as one year. This convention (which 

ignores retirement activity in age-interval 0 - h) originated from the use 

of orthogonal polynomials in estimating the parameters of a hazard 

function. This method can best be applied if the age-intervals are 

equally spaced. There is nothing, however, in the definition of the 

probabilities expressed in a life table which fixes the width of these 

2 
intervals. They may be chosen to suit the needs of the problem. 

It should also be noted that the last age-interval in which a sample 

of retirement data is grouped extends theoretically to infinity. Hence, 

^Infra, p. 42. 

2 
It is noted by Seed and Merrell (56) that the term "complete life 

table" is used by actuaries to designate a table in which the interval is 
one year, and probabilities are stated for every year of age. This, how
ever, is purely convention, since a table computed for monthly Intervals 
would be more complete and one for weekly intervals still more so. 
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life table estimates that are a function of the width of an age-interval 

are undefined for the last interval. 

The notation used to describe an age-interval can be extended to pro

vide a mathematical description of the elements of a life table. The 

general format of a life table is given in Table 1. Entries in the life 

table are defined as follows: 

(i) Mid-point (t^). The mid-point of the age-interval such 

that t^ = (t^ + t^^^)/2; k = 1, 2, . . -, n-1, where n is the 

last age-interval in which retirement data are grouped. 

(ii) Width (hj^). The width of the k^^ age-interval such that 

h^ = - t^; k = 1, 2, . . n-1. The width of the last 

interval, h^, in theory, is infinite; no estimates of the hazard 

function or survivorship function can be obtained for this 

interval. 

(iii) Number entering the k^^ age-interval (N^). The number of units 

entering the first age-interval is Ni, the total number of units 

placed in service as a group or vintage at age zero. In life 

studies of physical property it is assumed that all losses or 

withdrawals are actual retirements from service; so-called 

"right-censored" observations are not considered. Therefore, 

is the number of units exposed to the risk of failure or retire

ment at the start of the k^^ age-interval. 

(iv) Number retired (d^^). This is the number of units retired during 

the k'^ age-interval; thus, d^ = k = 1, 2, . . ., n-1. 

(v) Conditional proportion retired (q^^. This is the estimated 

probability of retirement during the k^^ age-interval, conditioned 
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Table 1. The Life Table 

Age-
Interval 
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point Width 
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Interval 
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Retired 

Conditional 
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Retired 
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Surviving 

Cumulative 
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Surviving 

Estimated 
Probability 
Density 
Function 

Estimated 
Hazard 
Function 

ti-tz 'ml hi Ni Ql Pi Si=1.0 ^1 

t2-t3 Sn2 h2 N2 d2 92 P2 S2 X2 

^k'^k+l 
t , 
mk \ \ \ Pk \ "V) 

^n-r^n 'mn-l Vl Vl \-l ^n-l Sn-l *n-l 
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Where: 'mk - <'k 
= 1, . . ., n-1. Sk - "k/"l " Pk-lVl' 

k = 2, . . n 

\ - Vi " 'k' 
• • • J tl' -1. = 1.0; k = 1. 

"k • 
k = 1, . . ., n-1. k - Sk+l)/hk ; k = 1, . • # $ ii*"l • 

Pfc -1 - k = 1, . . ., n-1. \ - 8(Pk' q^); k = 1 
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upon exposure to the risk or forces of retirement at the start 

of the k'^ interval. By definition. 

n - \+1 \ 
% = w = ^ ; k = 1, 2, . . n-1. (1) 
* *k *k 

In depreciation applications, is commonly termed a "retirement 

ratio". 

(vi) Conditional proportion surviving (Pj^)* This is the estimated 

probability of surviving the k^^ age-interval, conditioned upon 

exposure to the risk or forces of retirement at the start of the 

k^^ interval. Thus, by definition. 

^k+1 = 1 - ; k = 1, 2, . . ., n-1. (2) 

In depreciation applications, p^ is commonly termed a "survivor 

ratio". 

(vii) Cumulative proportion surviving (S^^). This is an estimate of the 

probability of surviving to the start of the k^^ age-interval. 

The estimate is given by 

N 
\ " ^k-1 ^k-1 " nT ' k = 2, 3, . . ., n 

= 1.0 k = 1. (3) 

This is a well-known life table estimate that is based on the 

fact that surviving to the start of the k^^ age-interval means 
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surviving to the start of the (k-1)^^ interval and then sur

viving the (k-1)'^ interval. This probability is defined for 

the last interval. 

(iix) Estimated probability density function f(t^). This is the 

estimated probability of retirement during the age-interval 

per unit width. This estimate is given by 

* ^k ~ ̂ k+1 f(t^) = ^ ̂  ; k = 1, 2, . . n-1. (4) 

Also, from the definition of p^ and it follows that 

f(t^) = ; k = 1, 2, . . n-l. (5) 

(ix) Estimated hazard function (X^). This is an estimate of the 

hazard function for the k'^ age-interval. In the literature of 

reliability theory, estimates of the hazard function are called 

hazard rates — a term which will be adopted here and discussed 

further under the heading "Estimates of the Hazard Function". 

Generally, is a function of p^ and q^. Thus, will 

presently be expressed as 

\ 9%); k = 1, 2, . . n-l. (6) 

The Suirvival Functions 

The functional relationship between the probability density function, 

the cumulative distribution function, the survivorship function, and the 
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hazard function has been described by Broadbent (8), Cox (15), Gehan (25), 

and Jordan (38), among others. Collectively, these functions are known as 

"survival functions" or "biométrie functions". To derive these functions, 

let I represent the life of a unit of property where T is measured from the 

installation date of the property to the date of its final retirement from 

service. We assume that T is a continuous random variable with one-

dimensional sample space = {t; 0 < t <»}. The survival functions are 

then defined as follows: 

(i) Probability density function (p.d.f.), f(t). Since T is a con

tinuous random variable, there exists a real-valued, non-negative 

function f(t), called the p.d.f., such that 

(a) if K is the set {t; tj < t < t2}, then the probability 

that T is in K, or the probability that a unit of 

property is retired between tj and t2 is given by 

and 

(b) 

Pr[0 < T < ®] f(x) dx = 1.0 

where 

Pr[t < T < t + At] 
f(t) = lim 

At-K) At 
(7) 
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Thus, f(t) is the instantaneous probability of retirement at 

age t. 

(ii) Cumulative distribution function (c.d.f.), F(t). The c.d.f., 

F(t) is defined as the probability that a unit of property is 

retired before age t and is given by 

F(t) = Pr[T < t], t > 0. 

Thus, 

t < 0 

F(t) = < j.t . (8) 

f(x) dx, t > 0 

Note that 

f(t) . ̂  

(iii) Survivorship function (s.f.), S(t). The s.f., S(t) is defined as 

the probability that a unit of property survives (i.e., remains 

in service) beyond age t and is given by 

S(t) = Pr[T > t] 

= 1.0 - F(t). 

Thus, 
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t < 0 

S(t) = ( . (9) 

f(x) dx, t > 0 

(iv) Hazard function (h.f.), A(t). The h.f., A(t) is the probability 

of nearly immediate retirement from service for a unit of prop

erty that is known to be in service at age t. That is. 

Now, from Equation 9 it is clear that 

dS(t) ^ _ dF(t) 
dt dt 

and from Equation 8 that 

These results can be combined with Equation 10 to obtain 

=  m  ' - s k ^  

Thus, 

-mt) = 
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and 

In S(t) « - S A(x)dx 

or 

A(x)dx 

S(t) = e * " (11) 

Let A(t) denote the cumulative hazard function, that is. 

x 
A(t) = I X(x)dx. 

^0 

Then 

S(t) = exp{-A(t)} 

and from Equations 8-10 

F(t) = 1 - S(t) = 1 - exp{-A(t)} (12) 

and 

f(t) = = exp{-A(t)} 

= A(t)exp{-A(t)}. (13) 
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Thus, given any one of the four survival functions, the other three can be 

derived from equivalent functions. If S(t) or F(t) is given, f(t) is 

obtained by differentiation and X(t) is obtained using Equation 10. If a 

form of f(t) is given, then F(t) is obtained using Equation 8, S(t) is 

obtained using Equation 9, and A(t) is obtained from Equation 10. 

Similarly, if X(t) is given, S(t) is obtained from Equation 11, F(t) from 

Equation 12, and f(t) from Equation 13. 
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ESTIMATES OF THE HAZARD FONCTION 

The purpose of this section Is to discuss certain nonparametrlc 

methods for estimating the hazard function for each age-interval. In 

particular, we are seeking a sample estimate of the hazard rate for each 

age-interval that can be used to obtain estimates of the parameters of a 

hazard function (presently unspecified) using ordinary regression methods. 

We are also interested in the efficiency of the parameters estimated by a 

weighted least squares procedure where the weights wj^ are either 1.0, 

l/Var(Aj^)» or N^h^. It is necessary, therefore, to obtain an estimate of 
A. 

the variance of the hazard rate (i.e., Var(X^) for each of the methods used 

to estimate the hazard function. 

Conditional Proportion Retired 

When the underlying mathematical law of mortality is unknown, the 

survivorship function S(t), and hence the hazard function X(t), can be 

estimated from the values S^ and respectively, in the life table. One 

of the simplest functions for is obtained by substituting the life table 

estimates for f(t) and S(t) into Equation 10, i.e., to use the estimate 

It should be noted that this estimate is the ratio of the estimated p.d.f. 

at the mid-point t^ of the k^ age-interval and the cumulative proportion 

surviving at t^, the beginning of the k^^ age-interval. Using Equation 4 

we can write 
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and from Equation 3, 

1 \ " \+l 1 \ 

\ \ W 

But, from Equation 1, d^/I^ is q^, the conditional proportion retired. 

Thus, 

L  
Xj, = ^ ; k = 1, 2, . . ., n-1. (14) 

The conditional proportion retired is commonly used by depreciation 

engineers as an estimate of the hazard function. However, it is seldom, 

if ever, used by researchers in other fields. This observation is sup

ported by a rather extensive literature search in the field of actuarial 

statistics and the biomedical sciences in which no example could be found 

where the conditional proportion retired (dying) was used as an estimate 

of the hazard function. By the same token, no example could be found in 

the literature of depreciation where an estimate other than the conditional 

proportion retired was used. 

An estimate of the variance of can be obtained from the sampling 

distribution of (the number of units entering the k^^ age-interval) and 

d^ (the number of units retired during the k*"^ age-interval). The number 

of units entering the first age-interval (i.e., Nj) can be viewed as Nj 

independent trials of a random experiment where each trial can have one of 
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several outcomes. The "outcome" of a particular unit (trial) may be 
f 

retirement during the first age-interval, the second age-interval, , 

or the n*"^ age-interval. Let di, 6%, . . ., d^ denote the number of units 

retired during the first age-interval, the second age-interval, ...» and 

the n^^ age-interval respectively. Also, let 8^ denote the probability 

that a unit is retired during the age-interval (k«l, 2, . . ., n). 

Thus, 

®k • 

where E is expected value. Assuming that the units act independently, 

it can be shown that the n-dimensional random vector (d^, d2, • • •* d^) 

is a multinomial random variable with parameters (N^; 62> Gg, • • •> 8^)» 

Thus, 

E[d^] = Ni8^; k » 1, 2, . . ., n 

Var(d^) = Ni8^(l - 8^) 

Cov(dj, d^) = -Ni8j6^; j # k. 

It can also be shown that the number of units surviving to the 

beginning of the k^^ age-interval is a binomial random variable such that 

e[nj^l - 2 ®i = bl(l -

i=k 
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n k-1 

varc^) - »!< 2 2 

i»k 

where 

Ni(l -

*k 

k-1 

2v 
1=1 

Consider the random variable = d^/N^, which Is the proportion of 

those units surviving to the start of the k'^ age-Interval that are retired 

during the k'^ Interval. Then, 

e(qfcl = \ \ 

and 

Var(i^) =. [var( ̂  I v] + [\ ' ̂  
"k 

where is the expectation and Var^ is the variance with respect to the 

random variable 1^. Now, it can be shown that the conditional distribution 

of d^, d^^, . . ., d^ given is multinomial with parameters (N^; q^, 

'^kfl* ' q^_i) where q^ « 8^/(1 - Therefore, 

Eldfc I B&J -
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var(dj^ i - q^) 

cov(dj, dj^) - ; j # k. 

Hence, 

e[,^] \ a ' ~ l  " x f t h ' v " ' -
] « qr 

and 

var(qj^) \ - V] + ̂ 5^ W 

«k<i - [^] • 

But, using the Taylor series expansion vhich is applicable when Nj is 

large. 

E [^] ' E[Nj^] ° Ni(l - y * Ni(l - "fj,)] ' Ni(l - y 

Thus, an approximate value of the variance of q^ is 

- qj 
var(qj^) -
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However, estimates of these parameters are 

and 

• V 

Therefore, 

nid - y -

^ - <iv<i - qJ 
Var(q^) » ^ (16) 

Having obtained an estimate of the variance of q^, an estimate of the 

variance of is given by 

^ ^(q^). 

Thus, for large samples. 

- 91.(1 - %) %Pj. 
var(xj^) = h^2n^ " h^ ' 

It should also be noted that the expected value of (i.e., E[A^]) is 

given by 

E * r ̂ kl 1 ^ 
tV " ' \ (1») 

lAich vas implicitly used to obtain the variance of q^. 
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Actuarial Estimate 

The so-called actuarial estimate of X(t) is considered by Gehan (25), 

Kimball (41), and Watson and Leadbetter (58), among others. This estimate 

can also be derived by substituting life table estimates of f(t) and S(t) 

into Equation 10 which defines the hazard function A(t). However, rather 

than estimating S(t) by S^, it is assumed that S(t) can be expressed as a 

linear function over the interval h^ such that plant retirements are 

distributed uniformly between t^ and t^^. It is reasonable, therefore, to 

estimate S(t) by the average cumulative proportion surviving at the mid

point of the interval. Thus, the actuarial estimate of X(t) is 

Using Equation 4, the actuarial estimate of X(t) can be written as 

-  W  

+ w 

and, from Equation 3, 

20^ - \»}'\ 
\ 

But, from Equation 2, (N^ - is 1 - Pj, and (^ + is 

1 + p^. Making these substitutions, we obtain 
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2(1 - p ) 2q 
A. - ^ ^ (19) 

\(1 + pfc) \(1 + pfc) 

In words, the actuarial estimate Is the number of retirements per unit 

time in the interval divided by the average number of survivors during the 

interval. This form is most often used in the biomedical sciences when the 

ages at death within the interval are not known. 

The expected value of can be obtained from a restatement of 

Equation 19 in which d^/N^ is substituted for q^ and is substituted 

for p^. Thus, 

\ 

4, 
This estimate can be treated as a function, f (d^, - ̂ ), of two random 

variables and using a Taylor series expansion up to the second term (i.e., 

1 = 2), 

:[\] 

r 

\ I ^ («k-N , ̂ '4% - N 

%[% - h] - h 

wheze u. denotes the expected value of d, and it^ denotes the 
\ d. ^ ®k - T> 

expected value of . Using the conditioning argument that 

et\] - e^[e<x^ i v] 

«here is the expectation with respect to the random variable and 
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the fact that conditional on d^ is a binomial (N^, q^) random variable, 

\a -

(1 - qo qk(i - qj 

^ 
211^(1 - 4(1 - 5^)2 

and 

e(y 
\a - q^) 

2l_ / 1 +-i —+ 

h^(l - I 4(1 -

where • 6^/(1 - ̂ j^). Since is a binomial [N^, (1 - random 

variable. 

{\] ' »i(i -
1 + *k 

nid - y 

Therefore, 

E[XJ -
9^(1 - qj.) (1 - qj.) 1 

1 + — — + 

4(1 - 2(1 - Ni(l -

1 + 

ni(l - y j 

(20) 

Ai estimate of the variance of is suggested by Gehan (25) whose 

development proceeds as follows: 

Let 

®k " \ • 
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k-1 

2v 
1=1 

-  \ - v  

k-1 

"k - 2 ''i' 
1-1 

'•v * - "k 

k-1 

1-1 

where E is expected value. Now, if a sample of units is followed until 

all are retired and each retirement is recorded as occurring in one of n 

fixed intervals, the joint distribution of the number retired is 

multinomial. From Equation 19 the estimate of the hazard rate for the k 

age-interval can be written as 

th 

24., 

\a + pp 

and 

Var 

a®» " ""k " 

Var ̂ 

hj,(ni - u^ - vj,/2)jl -
(nl - uk - 2(ni - u^ - v^/z). 

and this is approximately 

«Var 
f ôd, 
1  +  — +  

" "k " i v|^ wi - - vj^/2) 2 (h; - - v^/2) i 
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J ]=  ̂

lhj^(ni - uj, - v^/2)j 1 (ni - - 7^/2)2 4(ni - «j^ - ?%/2)2 

+ («y: 

2(ôdj^)(6inj^) (ôdj^)2 ^ (5m^) (ôd^) 

V, .(ni - - v^^/2) v^(«i - - v^/2) (nj - tij, - v^/2)^ 
] 

since E[ôd^] « E[6m^] = 0. 

. With the assunçtion of multinomial sampling, 

e[ôd^]2 - ni0j^(l - ep, e[ôm^]2 - ni*^(l - *^) 

and E[6d^ôm^] = Making these substitutions and after consider

able simplification, we obtain 

varcy = 
- iy.- 8^/2): 

- [  'k 

2(1 - - 8^/2)2 n 
This formula assumes cosçlete ascertainment of survival times. For 

incomplete sangles we use 

®k ' ®a ^ ï 

where = means is estimated by. With these assumptions and replacements, 

the estimated variance of becomes 



www.manaraa.com

51 

var(aj^) = Y 

«Â ['•[ 2 
-, fl 

(21) 

Maximum Likelihood Estimate 

It was shown earlier that the number of units retired during the k^^ 

age-interval (d^) from the units installed at time zero (N^) is a multi-

nomlally distributed random variable. The likelihood of the sai]q>le can be 

written as 

Ps 
nj! d, 

n V 
k«l 

(pisz) (p1p293) (Pi . 

kj! dj à.2 ^2 ^3 *^3 ^3 
: <ll Pi 92 Pi P2 93 

n 
k»l 

• Pi 
d 

pn-1 

nj! dj d2+d3+. ..+d^ 6.2 d3+di,.+.. .+d^ 
9l Pi 92 P2 

n V 
k=l 

/.-i A 
si-1 ^n-1 

njl di n2 dg n3 
; 9l Pi 92 P2 

n V 
k=l 

/.-i A 
^-1 ^n-1 

Nil n-1 n-1 d^ 

n 

nv 
k-1 

n 
k=l 

(22) 
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«here and are the true conditional probabilities of surviving and 

retiring in the k age-interval, i.e., q^ is the probability of retirement 

during the k^^ age-interval conditioned on the unit surviving to the k^^ 

age-interval. Similarly, p^ is the probability of surviving the k'^ age-

interval conditioned on the unit surviving to the k^^ age-interval. 

We now consider a formulation of the hazard function that was sug

gested by Sacher (57) and used by Gehan and Siddlqui (26) to analyze sur

vival data for patients with plasma cell siyeloma. Our motivation for 

considering this model will become apparent when the results are used with 

Equation 22 to obtain a maximum likelihood estimate of the hazard rate for 

each age-interval. 

Suppose that a sample of survival times is grouped into age-intervals 

that are small enough so that it is reasonable to assume that the hazard 

function is constant within each age-interval.^ In other words, we assume 

that 

X(t) = \; < t < t^^, k « 0, 1, . . ., n-1. 

l&ider these conditions, p^ can be written as 

PriT > tj, + \] 
Pj^ » Pr[T > + %% I ? > 

Pr[T > t^] 

s Is not unreasonable for industrial applications since h. (as 
defined on p. 31) is typically small in relation to the expected service 
life of a property unit at age zero. Furthermore, plant additions and 
retirements are usually recorded on an annual basis and treated as a mid
year occurrence for life studies and depreciation accounting. Sample data 
of this type would not, therefore, represent an Increasing or decreasing 
hazard rate within an age-interval. 
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th 
where h^, as defined earlier, is the width of the k age-interval. Since 

X(t) is now taken to be a step-function, we can replace the integral in 

Equation 11 with a summation operator and write 

r k 

pk 

Pr[T > + \3 

Pr[T > t^] 

exp - 2 
i«l 

r k-1 

exp 2 ̂i^i 
L i=l 

= exp -{%%%%}. (23) 

Similarly, using Equation 2 we can write 

Pr[t^ < T < t^ + h^] 

Pt[T > t^] 
1 - pt 

1 - exp{-xj,hj^} (24) 

We now have a specification for p^ and q^ in terms of the hazard 

function which can be used with Equation 22 to obtain a mnxiimm likelihood 

estimate of the hazard rate for each age-interval. Thus, making these 

substitutions for p^ and q^ in Equation 22, the likelihood of the sample 

becomes 

p, . ̂  g g 

i][ k-1 k-1 

k-1 

and taking the logarithm we obtain 
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L - la Ps - - X ̂cVlc+1 2l ̂  ® 
1^1 1p«1 

- ta n ̂ 
k»l 

The value of (i.e., A^) which maximizes L can be found by differenti

ating with respect to and setting the derivative equal to zero. 

3l _ ^ „ . W® 
'W 

^ k - 1. 2, . . ., n-1. 

Thus, to solve for we must solve 

[T - ° 

1 -

from which we obtain 

\n 

Now, by definition, + d^ = and, from Equation 2, • Pj^. 

Therefore, 

-w 
"k 

and the maximum likelihood estimator for is 
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\ • - 5^ 1= pi- (25) 

Although Equation 25 vas derived from a cohort life table which 

describes the retirement experience of a single vintage, it is a simple 

matter to extend this result to a series of cohorts in iAlch the retirement 

experience of several vintages is combined to obtain an estimator for 

To show this, we extend our notation to Include double subscripts t^ere the 

first subscript denotes a vintage and the second subscript denotes an age-

interval measured from the installation date of the same vintage. Thus, 

N. . for example, identifies the number of units from the vintage 
J 

entering the age-interval. 

Now, suppose that we have a homogeneous population in which each 

vintage is subject to the same forces of retirement and in which the con

ditional probability of retirement for one unit of property is not influ

enced by the retirement of any other unit in the group. IMder these con

ditions Nj can be viewed as the sum of all units entering the zero age-

interval from all vintages Included in the group. In other words, 

m 

\ • 2 "j.k-
i'l 

It follows then, from our assumption of Independence that Equation 22 

can be viewed as the likelihood of a sample obtained from a random experi

ment that is repeated m times. We can, therefore, restate Equation 25 in 

terms of m multiple vintages without changing the likelihood function. 

Thus, using Equation 26, we obtain 
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\ 1= p. 

m 

•^<2 «j.k) 

jtl 

\ 
j=i. 

(27) 

The expected value of can be obtained from a restatement of 

Equation 24 in which 1 - d^/N^ is substituted for p^. Thus, 

\ - - i; i=(i - ) 

Since = f(p^) is a function of the random variable p^, a Taylor series 

expansion about the expected value of p. 3rields 
pfc k 

y lA 

à ' 4 (pv -

pt-

and 

fcw: ) + y lA 

Û. ̂ 4 
If the Taylor series expansion is limited to two terms (i.e., i « 2), then 
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ecy - ^ ̂ - V + 2t^a- ""'k -

1 
^ ln(l - + 21^(1 - ,^)2 'ar(p^) 

where 

"k - v(i - V - vZ «1 
l=k 

But, 

^ 4c 
Var(p, ) * Var(l - — ) » Var( — ) 

\ \ 

and 

VarC ̂  ) - E^[var( ̂  | v] + I \] '• 
\ ftK] Since E | 7^ | j • q^, a constant, and 

_ _ \ 
4, , 

Var(^| V . " . 

it follows that 

Var( — ) • q^(l 
\ - k] 

From Equation 15, 
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Ni(l -

for Ni large. Therefore, 

Var( ̂  ) 
9^(1 - qj.) 

Ni(l -

and 

e[a^] i - j- ma - qp + - y» - %) (28) 

An approximation of the variance of the mmximm likelihood estimate 

can be obtained by considering the first term of a Taylor series 

expansion. Thus, 

varcy = e[xj^ - fcw" )]2 = ( # 
dpi 

)2var(p%) 

•k 

h|(l - 9%): 

'\a - qfc)! 

.sîci - yj 

h^ ni(l - *^)(1 - q^.) 
(29) 

An estimate of the variance of (i.e., Var(A^)) can be obtained from the 

sangle estimates of and BjCl - ̂ ^). These estimates are 

^k = % 



www.manaraa.com

59 

and 

nid -

Thus, 

% Var(\) « ^ (30) 

provides an estimate of the variance of that can be used to obtain a 

weighted regression estimate of the parameters of a hazard function. 
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METHOD OF ANALYSIS 

Having derived various estimates of the hazard rate for each age-

interval, it would be helpful to know which, if any, of these estimates is 

in some sense "best" for depreciation applications. Since the variance of 

the estimated hazard rate is different for each age-interval, a related 

question becomes which, if any, method of weighting combined with a given 

estimator provides the best estimate of the parameters of an assumed 

hazard function. 

To make this comparison, a Monte Carlo study was undertaken in which 

random samples were drawn from each of four different models of the hazard 

function X(t). The models chosen for this analysis include: 

(i) \(t) = Xq; Xq > 0 (exponential distribution) 

(ii) X(t) = Xq + Xjt; X(t) > 0 (linear hazard function) 

(iii) X(t) = exp{Xo + Xjt}; X(t) > 0 (Gonçsertz distribution) 

(iv) X(t) = XgXit^l Xq» Xj > 0 (Weibull distribution). 

For each of these models, either the hazard function or its logarithmic 

transform is a function of the parameters Xg, X^ and t (or In t). 

Consequently, the parameters of these models can be estimated by least 

squares, or by weighted least squares since the variance of the estimated 

hazard rate is different for each age-interval. 

The equations fitted to the sangles drawn from the four models are: 

(i) X^ = Xo (exponential distribution) 

(11) X^ = Xg + X^t^ (linear hazard function) 

(ill) In X^ = Xq + ̂l^nk (Gompertz distribution) 

(Iv) In Xj^ » In (XqXj) + (Xj - 1) In t^ (Weibull distribution) 
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where for all models, k"l, 2, . . ., n-l. 

The regression equations for all models can be written in the form 

Y » TA + e 

where Y is an (n-1) x 1 vector of observed hazard rates (or their natural 

logs) taken from the life table; T is an (n-1) x j matrix (j = 1, 2) which, 

depending on the model, contains ones and age-interval mid-points; X is a 

j X 1 vector of parameters; and e is an (n-1) x 1 vector of errors with 

expectation zero and sample variance matrix, 

V = 

This matrix is taken as diagonal since, as discussed earlier, it is not 

difficult to show that for large samples the covarlances of the hazard 

rates are asymptotically zero. For the purpose of this study, the elements 

of V are estimated by Var(X^) which are given by Equation 17 when the 

elements of Y are estimated by Equation 14 (the conditional proportion 

retired); Equation 21 when the elements of Y are estimated by Equation 19 

(the actuarial estimate); and Equation 30 when the elements of Y are 

estimated by Equation 25 (the maximinn likelihood estimate). When the 

elements of Y are In X^, v(t^) is given by '^àr(^)/x^2, 

A weighted least squares estimate of the elements of X (i.e., the 

parameters of the underlying hazard function) can be obtained by minimizing 

Z » (Y - TX)*W(Y - TX) 
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where 

W 

n-1 

is an (n-1) x (n-1) matrix of weights. The weights considered in this 

study are: 1.0, l/^r(A^), and N^h^. 

It is well-known that the vector of least squares estimates of the 

parameters is given by 

x « (t*wi)"^t*wy 

and the estimated variance-covariance matrix of A by 

» L'VL 

^ere 

L* = (T'WT)"^T'W . 

These calculations have been computerized by Kennedy (in Kef. 40) 

whose program was obtained from the Texas Medical Center and modified for 

the purpose of this study. A listing of the modified version of this 

program is contained in Appendix B. The general method of estimation of 

parameters can be described as follows: first, the program obtains sample 
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estimates of the hazard rates using the conditional proportion retired, the 

actuarial estimate, or the maTHmim likelihood estimate for each age-Interval 

over the observation period. From the sample estimates of the hazard rate 

for each age-Interval, the program obtains estimates of the parameters for 

the four models (both weighted and unweighted) by ordinary regression 

methods. Finally, using the least squares estimates of the parameters, the 

program computes the hazard, survivorship, and probability density functions 

for each of the four models. Because the width of the last age-interval is 

theoretically infinite, estimates of the hazard and probability density 

functions are not defined in that Interval. An additional feature of the 

program that was not Incorporated in this study is the calculation of a 

statistic that can be used in selecting the best fitting model. 

A second computer program was used to draw random samples from the 

four hazard functions chosen for this analysis. The program was originally 

written by this author (62) to simulate the retirement experience of 

industrial property drawn from a population described by the Iowa-Type 

survivorship functions. The program was modified to accommodate the four 

hazard functions used in this analysis and linked via disk output to the 

"Actuarial" program for estimating parameters by the above regression 

methods. The technique used to generate aged retirements is the well-

known Monte Carlo simulation procedure. A retirement is simulated by 

drawing a random number between 0.0 and 1.0 from a uniform distribution, 

where each number drawn represents a unit of property. The age of a 

retirement Is determined by calculating the value of t associated with a 

specified cumulative distribution function that has an ordinate value equal 

in magnitude to the value of the random number. This process Is repeated 



www.manaraa.com

64 

times (i.e., the number of units installed at age zero) and a tally is 

kept of the number of units retired in each age-interval. 

The population parameters assigned to the distributions (i.e., models) 

used in this study were selected to produce an average service life of 

approximately five years. This selection was viewed as a reasonable 

compromise between obtaining a sufficient number of age-intervals to 

conduct a meaningful analysis and minimizing the amount of computer time 

needed to generate a series of random samples and estimate the parameters. 

The values of the population parameters used in this study are as follows: 

Model ^0 

(i) Exponential distribution 0.20 — 

(ii) Linear hazard function 0.10 0.02 

(iii) Gon^ertz distribution -2.00 0.07 

(iv) WeibuU distribution 0.08 1.50 . 

A secondary consideration in this study was whether or not a given 

estimator combined with a given method of weighting consistently provides 

a "best" estimate of the population parameters under varying degrees of 

censoring. This question was investigated by truncating a complete life 

table for each model at two levels of censoring and estimating parameters 

from the censored data. The two levels of censoring were arbitrarily 

selected to produce a "lightly censored" life table ending at about 20% 

surviving and a "heavily censored" life table ending at about 60% 

surviving. The value of the survivorship function containing the popu

lation parameters and the corresponding age at which the life table was 

truncated for each model is as follows: 
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Model 
lightly censored heavily censored 
age S(t) age S(t) 

(i) Exponential distribution 8.5 18.27% 2.5 60.65% 

(ii) Linear hazard function 8.5 20.75 3.5 62.34 

(iii) Gompertz distribution 8.5 20.76 3.5 58.46 

(iv) Weibull distribution 7.5 19.33 3.5 59.22 . 

The results of this analysis are summarized in Tables 2 thru 13. 

Each of the 12 tables contains various estimates of the parameters and 

related statistics derived from 27 different analyses of a given model and 

degree of censoring. The first 3 tables provide a con^arison of the 

average estimates obtained when the underlying distribution was exponential. 

Tables 5 thru 7 contain the averages of parameters estimated when the 

underlying distribution was a linear hazard function. The average esti

mates obtained when the underlying distribution was Gorg)ertz is shown in 

. Tables 8 thru 10, and the averages obtained from a Weibull distribution 

are shown in Tables 11 thru 13. 

In total, 48,600 life tables were generated by drawing random samples 

containing either 100 or 1000 units installed at age zero. Parameters were 

estimated for both 100 and 1000 unit vintages in order to determine whether 

or not a given estimate of the hazard rate is sensitive to the size of the 

sample. An example of a generated life table, estimates of the parameters, 

and estimates of the hazard, survivorship, and probability density function 

is contained in Appendix C. 

Each of the 12 tables is also partitioned according to the number of 

replications included in each study. Averages of the parameter estimates 

were computed from either 50 or 100 vintages (i.e., replications) 
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Table 2. Exponential distribution — complete data 

R-50 Ni-lOO R-lOO Ni»100 R-50 Ni-1000 

W1 W2 W3 W1 W2 W3 W1 W2 W3 

Conditional Proportion Retired 
Xq 
Bias, 
S#D#XQ 
M.S.E. 

Actuarial Estimate 
h 
Bias. 
S•D* XQ 
M«S«E« 

Maximum Likelihood Estimate 
%0 
Bias. 
S.D.Xg 
M.S.E. 

.1822 .1464 .1758 .1825 .1452 .1763 .1844 .1768 .1819 

.0178 -.0536 -.0242 -.0175 -.0548 -.0237 -.0156 -.0232 -.0181 

.0226 .0230 .0169 .0217 .0241 .0161 .0122 .0070 .0048 

.0286 .0582 .0294 .0278 .0598 .0286 .0197 .0242 .0187 

.2087 .1589 .1963 .2093 .1593 .1969 .2085 .1933 .1997 

.0087 -.0411 -.0037 .0093 -.0407 -.0031 .0085 -.0067 -.0003 

.0290 .0232 .0206 .0280 .0225 .0197 .0157 .0071 .0057 

.0300 .0471 .0207 .0294 .0465 .0198 .0177 .0097 .0057 

.2111 .1594 .1975 .2117 .1600 .1982 .2104 .1938 .2004 

.0111 -.0406 •-.0025 .0117 -.0400 -.0018 .0104 -.0062 .0004 

.0299 .0232 .0209 .0291 .0222 .0200 .0163 .0070 .0057 

.0316 .0466 .0208 .0312 .0457 .0200 .0192 .0093 .0057 
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Table 3. Exponential distribution — lightly censored 

R-50 Ni-lOO R-lOO Ni-lOO R-50 Ni"1000 

W1 W2 W3 W1 W2 W3 W1 W2 W3 

Conditional Proportion Retired 
.1781 .1660 .1808 .1791 .1663 .1815 .1819 .1809 .1823 

Bias. -.0219 -.0340 -.0192 .0209 -.0337 -.0185 -.0181 -.0191 -.0177 
S.D.Xq .0218 .0206 .0185 .0195 .0197 .0187 .0056 .0058 .0058 
M.S.E. .0307 .0396 .0265 .0285 .0390 .0262 .0189 .0199 .0186 

Actuarial Estimate 
.1971 .1749 .2000 .1981 .1753 .2006 .1991 .1974 .1996 

Bias. -.0029 -.0251 .0000 -.0019 -.0247 .0006 -.0009 -.0026 -.0004 
S.D.Xg .0267 .0245 .0225 .0240 .0228 .0229 .0067 .0069 .0069 
M.S.E. .0266 .0349 .0223 .0240 .0335 .0228 .0067 .0073 .0068 

Maximum likelihood Estimate 
XQ .1980 .1748 .2009 .1990 .1752 .2015 .1997 .1979 .2003 
Bias. -.0020 -.0252 .0009 -.0010 -.0248 .0015 -.0003 -.0021 .0003 
S.D.XQ .0271 .0246 .0229 .0244 .0229 .0233 .0068 .0070 .0070 
M.S.E. .0269 .0350 .0227 .0243 .0337 .0232 .0067 .0072 .0069 
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Table 4, Exponential distribution — heavily censored 

R-50 Ni-lOO R-lOO Ni- 100 R-50 Ni»1000 

W1 W2 W3 W1 W2 W3 W1 U2 W3 

Conditional Proportion Retired 
%0 
Bias. 
S.D.Xg 
M.S.E. 

Actuarial Estimate 
Xo 
Bias. 
S « D« Xq 
M.S.E. 

Maximum Likelihood Estimate 
%0 
Bias. 
S.D.XQ 
M.S.E. 

1812 .1760 .1835 .1839 .1778 .1848 .1846 .1826 .1836 
0188 -.0240 -.0165 -.0161 -.0222 -.0152 -.0154 -.0174 -.0164 
0253 .0259 .0246 .0250 .0256 .0248 .0086 .0086 .0084 
0313 .0351 .0294 .0296 .0338 .0290 .0176 .0194 .0184 

1976 .1882 .2012 .2004 .1906 .2026 .2000 .1986 .1999 
0024 -.0118 .0012 .0004 -.0094 .0026 .0000 -.0014 -.0001 
0296 .0308 .0295 .0294 .0300 .0300 .0100 .0102 .0100 
0294 .0327 .0292 .0293 .0313 .0300 .0099 .0102 .0099 

1982 .1883 .2020 .2011 .1908 .2033 .2005 .1991 .2004 
0018 -.0117 .0020 .0011 -.0092 .0033 .0005 -.0009 .0004 
0298 .0310 .0299 .0297 .0301 .0303 .0101 .0102 .0101 
0296 .0328 .0297 .0296 .0313 .0303 .0100 .0101 .0100 
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Table 5. Linear hazard function — complete data 

R-50 Ni"100 R«100 Ni-lOO R-50 Ni-1000 

W1 W2 W3 W1 W2 W3 Ml W2 W3 

Conditional Proportion Retired 
%0 .1069 .1016 .1078 .1083 .1034 .1082 .1142 .1022 .1012 
Bias. .0069 .0016 .0078 .0083 .0034 .0082 .0142 .0022 .0012 
S «D» Aq .0343 .0254 .0212 .0389 .0265 .0248 .0265 .0088 .0088 
M.S.E. .0346 .0252 .0224 .0396 .0266 .0260 .0298 .0090 .0088 

.0139 ,0101 .0131 .0138 .0100 .0131 .0134 .0145 .0154 
Bias. -.0061 -.0099 -.0069 -.0062 -.0100 -.0069 —.0066 -.0055 -.0046 
S.D.Xi .0072 .0061 .0051 .0080 .0064 .0056 .0042 .0020 .0018 
M» S«E« .0094 .0116 .0085 .0101 .0119 .0089 .0078 .0058 .0049 

Actuarial Estimate 
.0984 .1008 .1075 .0999 .1024 .1080 .1016 .1028 .1013 

Bias. -.0016 .0008 .0075 -.0001 .0024 .0080 .0016 .0028 .0013 
S «D» Xq .0471 .0272 .0248 .0536 .0270 .0300 .0406 .0094 .0108 
M.S.E. .0467 .0269 .0257 .0533 .0270 .0309 .0402 .0097 .0108 

.0203 .0123 .0178 .0203 .0123 .0178 .0196 .0181 .0195 
Bias. .0003 -.0077 -.0022 .0003 -.0077 -.0022 -.0004 -.0019 -.0005 
S.D.^i .0106 .0066 .0065 .0116 .0063 .0072 .0066 .0021 .0023 
M.S.E. .0105 .0101 .0068 .0115 .0099 .0075 .0065 .0028 .0023 

l^iaxlmum Likelihood Estimate 
.0939 .1006 .1058 .0950 .1021 .1062 .0939 .1025 .1004 

Bias. -.0061 .0006 .0058 -.0050 .0021 .0062 .0061 .0025 .0004 
S(D* Aq .0503 .0272 .0251 .0583 .0266 .0308 .0469 .0094 .0111 
M.S.E. .0502 .0269 .0255 .0582 .0265 .0313 .0468 .0096 .0110 

.0216 .0124 .0186 .0217 .0124 .0186 .0212 .0183 .0200 
Bias. .0016 -.0076 -.0014 .0017 -.0076 -.0014 .0012 -.0017 .0000 
S.D.Xj .0116 .0066 .0067 .0130 .0062 .0076 .0076 .0021 .0024 
M.S.E. .0116 .0100 .0068 .0130 .0098 .0077 .0076 .0027 .0024 
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Table 6. Linear hazard function — lightly censored 

Conditional Proportion Retired 
xo 
bias. 
S•D« Xg 
M.S.E. 

Bias. 
s»d*xj 
M.S.E. 

Actuarial Estimate 
Xq 
Bias. 
s•d» xq 
M.S.E. 

Bias. 
s.d.xj 
M.S.E. 

Maximum Likelihood Estimate 

%0 
Bias. 
S.D.Xq 
M.S.E. 

h Blas^ 
S.D.Xj 
M.S.E. 

R-50 Ni-lOO R-lOO Ni-lOO R-50 Ni-1000 

W1 W2 W3 W1 W2 W3 W1 W2 W3 

0986 .0913 .0984 .0991 .0919 .0987 .0980 .0961 .0972 
0014 -.0087 -.0016 -.0009 -.0081 -.0013 -.0020 -.0039 -.0028 
0299 .0299 .0261 .0287 .0267 .0257 .0096 .0085 .0088 
0296 .0309 .0259 .0286 .0278 .0256 .0097 .0093 .0092 
0158 .0147 .0162 .0158 .0147 .0162 .0164 .0167 .0167 
0042 -.0053 -.0038 -.0042 -.0053 -.0038 -.0036 -.0033 -.0033 
0093 .0092 .0080 .0084 .0080 .0073 .0027 .0022 .0023 
0101 .0105 .0088 .0094 .0096 .0082 .0045 .0040 .0040 

1007 .0941 .1010 .1014 .0947 .1014 .1004 .0987 .0998 
0007 -.0059 .0010 .0014 -.0053 .0014 .0004 -.0013 -.0002 
0355 .0334 .0305 .0342 .0295 .0303 .0112 .0094 .0102 
0352 .0336 .0302 .0341 .0298 .0302 .0111 .0094 .0101 
0196 .0162 .0199 .0195 .0162 .0199 .0197 .0198 .0200 
,0004 -.0038 .0001 -.0005 -.0038 -.0001 -.0003 -.0002 .0000 
0119 .0109 .0100 .0106 .0096 .0091 .0033 .0026 .0028 
0118 .0114 .0099 .0106 .0103 .0091 .0033 .0026 .0028 

1003 .0942 .1008 .1012 .0948 .1012 .1003 .0986 .0997 
0003 -.0058 .0008 .0012 -.0052 .0012 .0003 -.0014 -.0003 
,0360 .0335 .0308 .0347 .0296 .0307 .0114 .0094 .0102 
,0356 .0337 .0305 .0345 .0299 .0306 .0113 .0094 .0101 
,0199 .0161 .0202 .0197 .0161 .0202 .0199 .0199 .0201 
,0001 -.0039 .0002 -.0003 -.0039 .0002 -.0001 -.0001 .0001 
,0122 .0109 .0102 .0109 .0096 .0093 .0033 .0026 .0028 
,0121 .0115 .0101 .0108 .0103 .0093 .0033 .0026 .0028 
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Table 7. Linear hazard function — heavily censored 

Conditional Proportion Retired 

Bias. 
S • D* XQ 
M.S.E. 

Bias. 
s•d* 
M.S.E. 

Actuarial Estimate 
%0 
Bias. 
S.D.XQ 
M.S.E. 

Bias. 
S.D.Xj 
M.S.E. 

Maximum Likelihood Estimate 
%0 
Bias. 
S.D.XQ 
M.S.E. 

Bias. 
s.d.xq 
M.S.E. 

R-50 Ni»100 R"100 Ni»100 R-50 Ni-1000 

W1 W2 W3 W1 W2 W3 W1 W2 W3 

.0967 .0889 .0962 .0974 .0894 .0971 .0952 .0939 .0945 
-.0003 -.0111 -.0038 —.0026 -.0106 -.0029 -.0048 -.0061 -.0055 
.0394 .0384 .0372 .0355 .0363 .0348 .0125 .0124 .0124 
.0391 .0396 .0370 .0354 .0376 .0347 .0133 .0137 .0135 
.0169 .0183 .0175 .0169 .0187 .0174 .0179 .0182 .0182 
-.0031 -.0017 -.0025 -.0031 -.0013 —•0026 -.0021 -.0018 -.0018 
.0218 .0216 .0209 .0211 .0218 .0207 .0071 .0069 .0069 
.0218 .0215 .0208 .0212 .0217 .0208 .0073 .0071 .0071 

0999 .0912 .0997 .1006 .0914 .1006 .0977 .0967 .0972 
0001 -.0088 -.0003 .0006 -.0086 .0006 -.0023 -.0033 -.0028 
0429 .0417 .0411 .0387 .0393 .0386 .0136 .0135 .0137 
0425 .0422 .0407 .0385 .0400 .0384 .0137 .0130 .0138 
0203 .0210 .0208 .0203 .0216 .0207 .0212 .0213 .0214 
0003 .0010 .0008 .0003 .0016 .0007 .0012 .0013 .0014 
0244 .0241 .0236 .0238 .0245 .0236 .0079 .007« .0078 
0242 .0239 .0234 .0237 .0244 .0235 .0079 .0070 .0078 

1000 .0912 .0997 .1006 .0914 .1006 .0977 .096,' .0972 
0000 -.0088 -.0003 .0006 -.0086 .0006 -.0023 -.003:4 -.0028 
0430 .0418 .0412 .0388 .0394 .0387 .0136 .013% .0137 
0426 .0423 .0408 .0386 .0401 .0385 .0137 .013U .0138 
0204 .0210 .0209 .0205 .0217 .0209 .0214 .0214 .0216 
0004 .0010 .0009 .0005 .0017 .0009 .0014 .0014 .0016 
0245 .0242 .0237 .0239 .0246 .0237 .0080 .0078 .0078 
0243 .0240 .0235 .0238 .0245 .0236 .0080 .0078 .0079 
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Table 8* Gompertz hazard function — complete data 

R-50 Ni-lOO R-lOO Nj-lOO R-5- Nj-lOOO 

W1 W2 W3 W1 W2 W3 W1 W2 W3 

Conditional Proportion Retired 
Ao -2.0919 -1.9953 -2.0717 -2.0694 -1.9885 -2.0571 -1.9957 -2.0505 -2.0462 
Bias. -0.0919 0.0047 -0.0717 -0.0694 0.0115 -0.0571 0.0043 -0.0505 -0.0462 
S«D«Xq 0.1820 0.1414 0.1584 0.1773 0.1491 0.1566 0.0806 0.0497 0.0530 
M.S.E. 0.2023 0.1401 0.1724 0.1896 0.1488 0.1659 0.0799 0.0705 0.0699 

0.0511 0.0616 0.0470 0.0498 0.0608 0.0464 0.0502 0.0631 0.0587 
Bias. -0.0189 -0.0084 -0.0230 -0.0202 -0.0092 -0.0236 -0.0198 -0.0069 -0.0113 
S.D. 0.0267 0.0224 0.0262 0.0272 0.0259 0.0266 0.0115 0.0079 0.0087 
M.S.E. 0.0325 0.0237 0.0347 0.0338 0.0274 0.0355 0.0228 0.0104 0.0142 

Actuarial Estimate 
%o -2.0616 -1.9612 -2.0237 -2.0383 -1.9544 -2.0095 -1.9570 -1.9974 -1.9923 
Bias. -0.0616 0.0388 -0.0237 -0.0383 0.0456 -0.0095 0.0430 0.0026 0.0077 
S.D.Xq 0.1925 0.1466 0.1658 0.1862 0.1517 0.1642 0.0882 0.0543 0.0570 
M.S.E. 0.2003 0.1502 0.1658 0.1892 0.1577 0.1637 0.0973 0.0538 0.0570 

h 0.0633 0.0724 0.0566 0.0619 0.0719 0.0563 0.0601 0.0708 0.0665 
Bias. -0.0067 0.0024 -0.0134 -0.0081 0.0019 -0.0137 -0.0099 0.0008 -0.0035 
S.D.Xj 0.0285 0.0223 0.0273 0.0292 0.0258 0.0279 0.0129 0.0089 0.0096 
M.S.E. 0.0290 0.0222 0.0302 0.0302 0.0257 0.0310 0.0162 0.0088 0.0101 

Maximum Likelihood Estimate 
Xg -2.0677 -1.9619 -2.0252 -2.0445 -1.9553 -2.0112 -1.9636 -1.9960 -1.9923 
Blas^ -0.0677 0.0381 -0.0252 -0.0445 0.0447 -0.0112 0.0364 0.0040 0.0077 
S.D.XQ 0.1943 0.1461 0.1661 0.1874 0.1494 0.1644 0.0903 0.0549 0.0574 
M.S.E. 0.2039 0.1496 0.1664 0.1917 0.1552 0.1640 0.0965 0.0545 0.0573 

%1 0.0654 0.0726 0.0580 0.0641 0.0723 0.0578 0.0619 0.0711 0.0673 
Bias. -0.0046 0.0026 -0.0120 -0.0059 0.0023 -0.0122 -0.0081 0.0011 -0.0027 
S.D.Xi 0.0290 0.0216 0.0274 0.0296 0.0249 0.0280 0.0133 0.0091 0.0097 
M.S.E. 0.0291 0.0215 0.0297 0.0300 0.0249 0.0304 0.0155 0.0091 0.0100 



www.manaraa.com

Table 9. Gompertz hazard function — lightly censored 

R-50 Ni»100 R-lOO Ni-lOO R-50 Nj-lOOO 

W1 W2 W3 W1 W2 W3 W1 W2 W3 

Conditional Proportion Retired 
Xo -2.1238 -2.0200 -2.1039 -2.1076 -2.0242 -2.0977 -2.0561 -2.0526 -2.0604 
Bias. -0.1238 -0.0200 -0.1039 -0.1076 -0.0242 -0.0977 -0.0561 -0.0526 -0.0604 
S«D*Xg 0.2468 0.1931 0.2096 0.2239 0.1763 0.1973 0.0605 0.0589 0.0599 
M.S.E. 0.2739 0.1922 0.2321 0.2474 0.1771 0.2193 0.0821 0.0785 0.0846 
Xi 0.0586 0.0641 0.0579 0.0604 0.0678 0.0605 0.0619 0.0635 0.0634 
Bias. -0.0114 -0.0059 -0.0121 -0.0096 -0.0022 -0.0095 -0.0081 -0.0065 -0.0066 
S.D.Xi 0.0594 0.0480 0.0523 0.0530 0.0425 0.0488 0.0142 0.0135 0.0138 
M.S.E. 0.0599 0.0479 0.0532 0.0536 0.0423 0.0495 0.0162 0.0149 0.0152 

Actuarial Estimate 

%o -2.0723 -1.9665 -2.0486 -2.0567 -1.9711 -2.0434 -2.0042 -1.9977 -2.0059 
Bias. -0.0723 0.0335 -0.0486 -0.0567 0.0289 -0.0434 -0.0042 0.0023 -0.0059 
S•D•Xq 0.2581 0.2047 0.2210 0.2340 0.1868 0.2078 0.0640 0.0628 0.0637 
M.S.E. 0.2655 0.2054 0.2241 0.2396 0.1881 0.2113 0.0635 0.0622 0.0633 
Xl 0.0663 0.0705 0.0653 0.0686 0.0747 0.0684 0.0698 0.0709 0.0710 
Bias. -0.0037 0.0005 -0.0047 -0.0014 0.0047 -0.0016 -0.0002 0.0009 0,0010 
S.D.Xi 0.0634 0.0516 0.0560 0.0566 0.0458 0.0521 0.0154 0.0147 0.0149 
M.S.E. 0.0629 0.0511 -0.0556 0.0563 0.0458 0.0519 0.0152 0.0146 0.0148 

Maximum Likelihood Estimate 
Xo -2.0715 -1.9655 -2.0476 -2.0559 -1.9702 -2.0425 -2.0034 -1.9968 -2.0049 
Bias. -0.0715 0.0345 -0.0476 -0.0559 0.0298 -0.0425 -0.0034 0.0032 -0.0049 
S.D.Xq 0.2588 0.2052 0.2217 0.2345 0.1872 0.2084 0.0643 0.0631 0.0639 
M.S.E. 0.2660 0.2060 0.2246 0.2399 0.1886 0.2117 0.0637 0.0625 0.0634 
Xl 0.0669 0.0706 0.0659 0.0692 0.0748 0.0690 0.0703 0.0714 0.0715 
Bias. -0.0031 0.0006 -0.0041 -0.0008 0.0048 -0.0010 0.0003 0.0014 0.0015 
S.D.Xj 0.0638 0.0518 0.0563 0.0569 0.0460 0.0523 0.0155 0.0147 0.0150 
M.S.E. 0.0632 0.0513 0.0559 0.0566 0.0460 0.0520 0.0153 0.0146 0.0149 
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Table 10. Gompertz hazard function — heavily censored 

R-50 Ni"100 R-lOO Ni-lOO R-50 Ni»1000 

W1 W2 W3 W1 W2 W3 W1 W2 W3 

Conditional Proportion Retired 
XQ -2.1874 -2.0386 -2.1585 -2.1206 02.0141 -2.1096 -2.0615 -2.0556 -2.0632 
Bias. -0.1874 -0.0386 -0.1585 -0.1206 -0.0141 -0.1096 -0.0615 -0.0556 -0.0632 
S «D*Xq 0.3604 0.2890 0.3038 0.3595 0.2761 0.3129 0.0936 0.0867 0.0870 
M.S.E. 0.4030 0.2887 0.3400 0.3775 0.2751 0.3301 0.1112 0.1023 0.1068 
Al 0.1035 0.0667 0.0958 0.0724 0.0504 0.0707 0.0625 0.0620 0.0635 
Blas^ 0.0335 -0.0033 0.0258 0.0024 -0.0196 0.0007 -0.0075 -0.0080 -0.0065 
S*D«XJ 0.1673 0.1326 0.1467 0.1706 0.1352 0.1543 0.0476 0.0436 0.0448 
M.S.E. 0.1690 0.1313 0.1475 0.1698 0.1359 0.1535 0.0477 0.0439 0.0448 

Actuarial Estimate 
Xo -2.1469 -1.9935 -2.1123 -2.0786 -1.9681 -2.0626 -2.0205 -2.0092 -2.0172 
Bias^ -0.1469 0.0065 -0.1123 -0.0786 0.0319 -0.0626 -0.0205 -0.0092 -0.0172 
S.D•XQ 0.3700 0.3029 0.3152 0.3702 0.2895 0.3253 0.0974 0.0910 0.0912 
M.S.E. 0.3946 0.2999 0.3316 0.3766 0.2898 0.3297 0.0986 0.0906 0.0919 

Xi 0.1193 0.0801 0.1098 0.0872 0.0629 0.0838 0.0777 0.0750 0.0769 
Bias. 0.0493 0.0101 0.0398 0.0172 -0.0071 0.0138 0.0077 0.0050 0.0069 
S.D.Xi 0.1734 0.1404 0.1532 0.1774 0.1429 0.1616 0.0502 0.0463 0.0474 
M.S.E. 0.1786 0.1394 0.1568 0.1773 0.1424 0.1614 0.0503 0.0461 0.0474 

Maximum Likelihood Estimate 
XQ -2.1462 -1.9930 -2.1114 -2.0779 -1.9674 -2.0617 -2.0199 -2.0085 -2.0164 
Blas^ -0.1462 0.0070 -0.1114 -0.0779 -0.0326 -0.0617 -0.0199 -0.0085 -0.0164 
S.D.XQ 0.3703 0.3035 0.3157 0.3705 0.2901 0.3258 0.0975 0.0912 0.0914 
M.S.E. 0.3947 0.3005 0.3318 0.3768 0.2905 0.3300 0.0986 0.0907 0.0920 

Xi 0.1200 0.0807 0.1104 0.0879 0.0634 0.0844 0.0783 0.0756 0.0775 
Bias. 0.0500 0.0107 0.0404 0.0179 -0.0066 0.0144 0.0083 0.0056 0.0075 
S.D.XJ 0.1737 0.1409 0.1535 0.1777 0.1433 0.1620 0.0503 0.0464 0.0476 
M.S.E. 0.1791 0.1399 0.1572 0.1777 0.1427 0.1618 0.0505 0.0463 0.0477 
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Table 11. Weibull hazard function — complete data 

R-50 Ni-lOO R-lOO Ni-lOO R-50 Ni-1000 

W1 W2 W3 W1 W2 W3 W1 W2 W3 

Conditional Proportion Retired 
Xq 0.0827 0.0869 0.0782 0.0800 0.0845 0.0770 0.0800 0.0773 0.0753 
Bias, 0.0027 0.0069 -0.0018 0.0 0.0045 -0.0030 0.0 -0.0027 -0.0047 
S «Da Aq 0.0344 0.0381 0.0239 0.0279 0.0296 0.0216 0.0095 0.0056 0.0068 
M.S.E. 0.0342 0.0383 0.0237 0.0278 0.0298 0.0217 0.0094 0.0062 0.0082 
h 1.3999 1.4526 1.4324 1.4081 1.4562 1.4371 1.4193 1.4596 1.4675 
Bias. -0.1001 -0.0474 -0.0676 -0.0919 -0.0438 -0.0629 -0.0807 -0.0404 -0.0325 
S • Da X J 0.1566 0.1460 0.1364 0.1406 0.1272 0.1335 0.0645 0.0340 0.0429 
M.S.E. 0.1845 0.1521 0.1510 0.1674 0.1339 0.1470 0.1029 0.0526 0.0535 

Actuarial Estimate 
Xo 0.0837 0.0854 0.0801 0.0808 0.0834 0.0789 0.0812 0.0785 0.0776 
Bias. 0.0037 0.0054 0.0001 0.0008 0.0034 -0.0011 0.0012 -0.0015 -0.0024 
S.D.XQ 0.0345 0.0301 0.0242 0.0280 0.0244 0.0222 0.0099 0.0061 0.0072 
M.S.E. 0.0344 0.0303 0.0240 0.0279 0.0245 0.0221 0.0099 0.0062 0.0075 
Xi 1.4590 1.5112 1.4801 1.4677 1.5160 1.4847 1.4755 1.5099 1.5102 
Bias. -0.0410 0.0112 -0.0199 -0.0323 0.0160 -0.0153 -0.0245 0.0099 0.0102 
S.D. 0.1612 0.1314 0.1366 0.1451 0.1192 0.1355 0.0692 0.0358 0.0441 
M.S.E. 0.1648 0.1306 0.1367 0.1479 0.1197 0.1357 0.0728 0.0368 0.0448 

Maximum Likelihood Estimate 
Xo 0.0829 0.0848 0.0797 0.0802 0.0830 0.0786 0.0806 0.0784 0.0776 
Bias. 0.0029 0.0048 -0.0003 0.0002 0.0030 -0.0014 0.0006 -0.0016 -0.0024 
S.D.Xg 0.0333 0.0270 0.0237 0.0273 0.0225 0.0218 0.0098 0.0061 0.0072 
M.S.E. 0.0331 0.0272 0.0235 0.0272 0.0226 0.0217 0.0097 0.0062 0.0075 
Xi 1.4685 1.5124 1.4859 1.4772 1.5174 1.4903 1.4839 1.5134 1.5137 
Bias. -0.0315 0.0124 -0.0141 -0.0228 0.0174 -0.0097 -0.0161 0.0134 0.0137 
S.D.Xj 0.1617 0.1235 0.1358 0.1457 0.1139 0.1350 0.0698 0.0360 0.0441 
M.S.E. 0.1631 0.1229 0.1352 0.1468 0.1147 0.1347 0.0709 0.0381 0.0458 
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Table 12. Welbull hazard function — lightly censored 

R-50 N -100 R-lOO N -100 R-50 N -1000 

W1 W2 W3 W1 W2 W3 W1 W2 W3 

Conditional Proportion Retired 
ÂQ 0.0745 0.0824 0.0733 0.0744 0.0811 0.0735 0.0742 0.0768 0.0745 
Bias. -0.0055 0.0024 -0.0067 -0.0056 0.0011 -0.0065 -0.0058 -0.0032 -0.0055 
S*D«Xq 0.0220 0.0221 0.0184 0.0217 0.0206 0.0195 0.0079 0.0060 0.0070 
M.S.E. 0.0225 0.0220 0.0194 0.0223 0.0205 0.0205 0.0097 0.0067 0.0088 

1.4710 1.4623 1.4851 1.4699 1.4699 1.4845 1.4774 1.4642 1.4787 
Bias. -0.0290 -0.0377 -0.0149 -0.0301 -0.0301 -0.0155 -0.0226 -0.0358 -0.0213 
S«D«Xj 0.1458 0.1300 0.1370 0.1575 0.1326 0.1504 0.0507 0.0374 0.0475 
M.S.E. 0.1472 0.1341 0.1364 0.159(5 0.1353 0.1504 0.0550 0.0515 0.0516 

Actual Estimate 
Xo 0.0774 0.0848 0. 0760 0.077:2 0.0833 0.0761 0.0769 0.0789 0.0772 
Bias. -0.0026 0.0048 -0. 0040 -0.0028 0.0033 -0.0039 -0.0031 -0.0011 -0.0028 
S.D.Xq 0.0234 0.0231 0. 0195 0.0230 0.0218 0.0207 0.0082 0.0065 0.0074 
M.S.E. 0.0233 0.0234 0. 0197 0.0231 0.0219 0.0210 0.0087 0.0065 0.0078 
Xi 1.5090 1.5024 1. 5238 1.5084 1.5113 1.5235 1.5164 1.5070 1.5172 
Bias. 0.0090 0.0024 0. 0238 0.0084 0.0113 0.0235 0.0164 0.0070 0.0172 
S.D.Xi 0.1506 0.1355 0. 1415 0.1642 0.1412 0.1563 0.0518 0.0400 0.0485 
M.S.E. 0.1494 0.1342 0. 1421 0.1636 0.1409 0.0573 0.0538 0.0402 0.0510 

Maximum Likelihood Estimate 
Xo 0.0774 0.0847 0.0760 0.0772 0.0833 0.0761 0.0769 0.0788 0.0772 
Bias. -0.0026 0.0047 -0.0040 -0.0028 0.0033 -0.0039 -0.0031 -0.0012 -0.0028 
S.D.XQ 0.0234 0.0230 0.0195 0.0230 0.0218 0.0207 0.0082 0.0065 0.0074 
M.S.E. 0.0233 0.0232 0.0197 0.0231 0.0219 0.0210 0.0087 0.0065 0.0078 
Xj 1.5116 1.5039 1.5264 1.5111 1.5130 1.5261 1.5188 1.5098 1.5195 
Bias. 0.0116 0.0039 0.0264 0.0111 0.0130 0.0261 0.0188 0.0098 0.0195 
S.D.Xi 0.1510 0.1349 0.1419 0.1648 0.1414 0.1568 0.0519 0.0402 0.0486 
M.S.E. 0.1499 0.1336 0.1429 0.1643 0.1413 0.1582 0.0547 0.0410 0.0519 
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Table 13. Welbull hazard function — heavily censored 

R-50 Ni-lOO R-lOO N1-100 R-50 Ni-1000 

W1 W2 W3 W1 W2 W3 W1 W2 W3 

Conditional Proportion Retired 
Âo 0.0730 0.0813 0.0724 0.0732 0.0788 0.0725 0.0739 0.0751 0.0740 
Blas^ -0.0070 0.0013 -0.0076 -0.0068 -0.0012 -0.0075 -0.0061 -0.0049 -0.0060 
S«D«Xq 0.0217 0.0231 0.0199 0.0221 0.0224 0.0210 0.0081 0.0067 0.0075 
M.S.E. 0.0226 0.0229 0.0211 0.0230 0.0223 0.0222 0.0101 0.0082 0.0095 
Â1 1.5160 1.4645 1.5221 1.5191 1.4976 1.5276 1.4984 1.4877 1.4977 
Blas^ 0.0160 -0.0355 0.0221 0.0191 -0.0024 0.0276 -0.0016 -0.0123 -0.0023 
S.D.Xi 0.2489 0.2234 0.2377 0.2385 0.2171 0.2316 0.0762 0.0625 0.0726 
M.S.E. 0.2469 0.2240 0.2363 0.2381 0.2160 0.2321 0.0755 0.0631 0.0719 

Actuarial Estimate 
Âo 0.0758 0.0839 0.0752 0.0761 0.0814 0.0753 0.0767 0.0778 0.0768 
Blas^ -0.0042 0.0039 -0.0048 -0.0039 0.0014 -0.0047 -0.0033 -0.0022 -0.0032 
S.D.Aq 0.0227 0.0242 0.0209 0.0233 0.0237 0.0222 0.0085 0.0072 0.0079 
M.S.E. 0.0229 0.0243 0.0212 0,0235 0.0236 0.0226 0.0090 0.0075 0.0084 
Xl 1.5503 1.5035 1.5571 1.5538 1.5363 1.5632 1.5320 1.5235 1.5317 
Blas^ 0.0503 0.0035 0.0571 0.0538 0.0363 0.0632 0.0320 0.0235 0.0317 
S.D.X^ 0.2582 0.2379 0.2481 0.2462 0.2297 0.2403 0.0773 0.0655 0.0739 
M.S.E. 0.2605 0.2355 0.2522 0.2508 0.2314 0.2473 0.0829 0.0690 0.0797 

Maximum Likelihood Estimate 

^0 0.0758 0.0838 0.0752 0.0761 0.0814 0.0753 0.0767 0.0778 0.0768 
Bias. -0.0042 0.0038 -0.0048 -0.0039 0.0014 -0.0047 -0.0033 -0.0022 -0.0032 
S.D.XQ 0.0227 0.0242 0.0210 0.0233 0.0237 0.0222 0.0085 0.0072 0.0079 
M.S.E. 0.0229 0.0243 0.0213 0.0235 0.0236 0.0226 0.0090 0.0075 0.0084 

Xi 1.5518 1.5055 1.5587 1.5554 1.5381 1.5649 1.5334 1.5252 1.5331 
Bias. 0.0518 0.0055 0.0587 0.0554 0.0381 0.0649 0.0334 0.0252 0.0331 
S.D.Xi 0.2589 0.2393 0.2490 0.2467 0.2307 0.2409 0.0774 0.0657 0.0740 
M.S.E. 0.2615 0.2370 0.2534 0.2516 0.2327 0.2483 0.0836 0.0698 0.0804 
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containing either 100 or 1000 units per vintage. The number of vintages 

Included In a study of 100 units per vintage was increased from 50 to 100 

in order to determine whether or not 50 replications was sufficient to 

estimate the underlying population parameters. Thus, the notation R • 50, 

= 100 describes an analysis of 50 vintages (replications) containing 

100 units per vintage. 

It was noted earlier that the vector of observed hazard rates Y was 
* 

weighted by either 1.0 (i.e., no weighting), l/Var(X^), or N^h^ to obtain 

a weighted least squares estimate of the parameters of the underlying 

hazard function. The estimates obtained from each of these weigjhts are 

identified in Tables 2 thru 13 as Wl, W2, W3; where W1 is an unweighted 

estimate, W2 is weighting by the Inverse of the estimated variance of the 

hazard rate, and W3 is weighting by the number of units entering an age-

interval times the width of the interval. 

The rows of Tables 2 thru 13 are divided into three major sections 

which identify the parameter estimates and related statistics associated 

with (1) the conditional proportion retired, (2) the actuarial estimate, 

and (3) the maximum likelihood estimate of the hazard rate for each age-

interval. The statistics computed for a given model, estimator, vintage 

size, number of replications, and weighting are defined as follows: 

R 

X j jl j - 0, 1 

i-1 

Bias • Xj - Xj ; j • 0, 1 
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1=1 

M.S.E. = y ̂ ~ ̂  (S.D.Aj)2 + BiasZ . j = 0, 1. 

In words, is approximately the mean or average of the probability 

distribution of the estimator (j = 0, 1). The Bias is the difference 

between the mean of the probability distribution of the estimator and the 

true value of X^ — the population parameter of the underlying distribution. 

The standard deviation, S.D.X^, is calculated as the square root of the 

sum of the deviations squared divided by the number of vintages less one. 

It should be noted that the mean square error (M.S.E.) is usually defined 

as the sum of the population variance and the bias squared. The statistic 

shown in Tables 2 thru 13 is the square root of this quantity or, more 

properly defined, the root mean square error. 

The results shown in Table 2 were derived from a constant hazard 

function iAich has a probability density function f(t) and a survivorship 

function S(t) that are negative e^onential. The simplicity of this model 

(i.e., a single parameter) offers the possibility of a reasonably good 

analysis of the statistical properties of the weigjhted and unweighted 

estimates of the hazard rate. The consistency of the results also suggests 

that the exponential distribution is well-suited to a comparative analysis 

of the properties of the estimators. 
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It is evident from Table 2 that the maxiimim likelihood estimate, 

weighted by the number of units entering an age-Interval, consistently 

yields an estimate of Xg that is closer to the true value (i.e., 0.20) 

than either the conditional proportion retired or the actuarial estimate. 

The reasonableness of this result can be verified by calculating the 

theoretical bias of each estimator from the equations developed for the 

expected value of The magnitude of the theoretical bias should be 

comparable to the unweighted bias shown in Table 2. 

The theoretical bias of the conditional proportion retired can be 

calculated from Equation 18 where, under a constant hazard function, it can 

be shown that 

-ah^ 
= (1-e 5 

and 

1 „ e[\] - ^ (1 - e -) 

where a = X(t). Thus, when a = 0.20 and hj^ = 1, 

E[Â^] « 1 - e'®*^° - 0.1813 

and the theoretical bias becomes 

Bias = E[^] -

« 0.1813 - 0.20 

® —0.0187. 
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Similarly, the theoretical bias of the actuarial estimate can be calcu

lated from Equation 20 vhere, under a constant hazard function, it can be 

shown that 

-dh, 
- (1 - e *), 

-at. 
(1 - " e 

and 

-ah, 
(1 - e 

-o\ -ah, 
e k(l - e k) 

h^il - %(1 - e 5] I 4[1 - %(1 - e *)]2 

-oh^ 

I —k 
2î1 - - e 3] lnie 

:Wl (31) 

where a = X(t). Thus, when a = 0.20 and hj^ = 1, 

E 0.2083 

which is obtained by evaluating only those terms of Equation 31 which do 

not depend on Ni, the vintage size. The theoretical bias then becomes 

Bias = E[A^] -

= 0.2083 - 0.20 

= 0.0083. 
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The calculation of the bias of the maximum likelihood estimate is 

rather complicated since, under a constant hazard function, an evaluation 

of Equation 28 yields an expression of the form 

- a+ ° (32) 

2N,e 

where the second term of the right-hand side of Equation 32 is the bias. 

Thus, the bias of the likelihood estimate is a function of both 

the vintage size, and t^^, the end point of the k'^ age-interval. An 

example of the bias was calculated, however, by evaluating Equation 32 for 

o = 0.20, Nj = 100, and t^^ = 4. The resulting bias is 0.002. 

Thus, the theoretical bias of the maYiimnn likelihood estimate is less 

than the bias of either the conditional proportion retired or the actuarial 

estimate, which is consistent with the results shown in Table 2. This is 

not totally surprising, however, since it can be shown that the maximum 

likelihood estimate is asymptotically unbiased for large values of N^. It 

should also be noted that the maximum likelihood estimate of (i.e.. 

Equation 25) was developed under the assumption that a hazard function is 

constant within each age-interval.^ The exponential distribution is con

sistent with this assumption and should, therefore, improve the relative 

bias of the maximum likelihood estimate. 

Although an unbiased estimator is generally preferred over a biased 

estimator, unbiasedness is not necessarily an indispensable property of a 

"good" estimator. If the amount of bias is small compared with the 

^Supra, p. 52. 
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standard deviation of the estimator, the estimator though biased may be 

entirely satisfactory. It is important, therefore, to also consider the 

standard deviation of the estimates obtained from each estimate of the 

hazard rate. 

It is evident from Table 2 that the conditional proportion retired, 

weighted by the number of units entering an age-interval, consistently 

yields a smaller standard deviation of Xg than either the actuarial esti

mate or the maximum likelihood estimate. This result is not totally 

satisfying, however, since one is now confronted with the problem of 

choosing between an estimator that yields a relatively small bias (i.e., 

the maximum likelihood estimate) and an estimator that yields a relatively 

small standard deviation (i.e., the conditional proportion retired). It 

is helpful, therefore, to combine the bias and standard deviation into a 

single statistic which provides a joint measurement of the two properties. 

The root mean square error has been used for this purpose. 

The analysis shown in Table 2 Indicates that the actuarial estimate, 

weighted by the number of units entering an age-interval, consistently 

yields a smaller root mean square error than either the conditional pro

portion retired or the maximum likelihood estimate. 

Thus, it can be concluded from Table 2 that each of the three esti

mators exhibits certain characteristics of a "good" estimator and the 

choice of which estimator is "best" depends on which statistical property 

is considered most important. If the underlying hazard function is known 

to be a constant and a small bias is crucial, then the ma-iritmim likelihood 

estimate should be selected. On the other hand, if a small standard 

deviation is crucial, then the conditional proportion retired should be 



www.manaraa.com

84 

selected. If the smallest combined standard deviation and bias Is 

Important, then the actuarial estimate should be selected. In all cases, 

however, weighting by the number of units entering an age-Interval Is 

better than weighting by either the Inverse of the estimated variance of 

the hazard rate or an unweighted estimate. 

The conclusions drawn from Table 2 are generally applicable to Tables 

3 and 4 which provide an analysis of two levels of censoring when the under

lying hazard function is known to be a constant. As the data become more 

censored, however, the bias of the ma-WimTm likelihood estimate tends to 

exceed the bias of the actuarial estimate which is less than the bias of 

the conditional proportion retired. The conditional proportion retired 

appears to yield the smallest standard deviation regardless of the degree 

of censoring. 

The results shown in Table 5 were derived from a linear hazard 

function which necessitates the estimation of two parameters. This 

slightly more complicated model also contradicts the assumption of a 

constant hazard function within each age-interval which was postulated to 

develop the maximum likelihood estimator. It is not surprising, therefore, 

that the Tnaytiw™ likelihood estimate, weighted by the number of units 

entering an age-interval, consistently yields a larger bias than the 

actuarial estimate and a smaller bias than the conditional proportion 

retired. This result appears to hold for estimates of both Xq and 

It is also evident from Table 5 that the conditional proportion 

retired, weighted by the number of units entering an age-interval, con

sistently yields a smaller estimate of the standard deviation of both Xg 

and Xj than either the actuarial estimate or the maximum likelihood 
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estimate. It Is disconcerting to note, however, that the conditional 

proportion retired, weighted by the number of units entering an age-

interval, consistently yields the smallest root mean square error of Xq 

while the actuarial estimate, weighted by the number of units entering an 

age-interval, consistently yields the smallest root mean square error of 

Thus, the root mean square error offers little guidance in selecting 

the "best" estimator for the linear model. 

Unlike the constant hazard function, the linear model tends to show a 

disproportionate change in the bias and standard deviation when the number 

of replications is increased from 50 to 100. This suggests that the number 

of vintages included in the study may be insufficient to estimate the 

population parameters. However, an additional analysis of the linear model 

which included 500 replications showed no significant change in the bias 

and standard deviation from the results obtained using 100 replications. 

Therefore, it is reasonable to conclude that 100 replications is sufficient 

to estimate the population parameters of the linear model. 

The results shown in Tables 6 and 7 suggest that censoring a linear 

model has a greater effect on the parameter estimates than censoring a 

constant hazard function. As the data become more censored, the bias, 

standard deviation, and root mean square error for the actuarial estimate 

approach the value of the corresponding statistics for the maximum likeli

hood estimate. This result only holds for estimates of Xg. Furthermore, 

as the data become more censored, the conditional proportion retired, 

weighted by the number of units entering an age-interval, consistently 

yields the smallest root mean square error for both Xq and X^. 

The results shown in Table 8 were derived from a Goiq>ertz hazard 
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function vhlch also necessitates the estimation of two parameters. The 

coB^lexity of this model appears to introduce several inconsistencies that 

were not observed with the previous models. For example, the smallest 

bias, standard deviation, and mean square error all occur when the esti

mates are weighted by the inverse of the estimated variance of the hazard 

rate. The previous models showed the number of units entering an age-

interval to be the best weighting. The Goiiq>ertz model also yields erratic 

results as the vintage size is increased from 100 to 1000. 

Progressive censoring of the Gompertz model does, however. Introduce 

some consistency in the estimates. The results shown in Tables 9 and 10 

suggest that the conditional proportion retired, weighted by the Inverse of 

the estimated variance of the hazard rate, consistently yields the smallest 

standard deviation and mean standard error for both Xq and There is 

not, however, an estimator that consistently yields the smallest bias when 

the model is censored. 

The results shown in Table 11 were derived from a two-parameter 

Weibull hazard function. There are few, if any, consistencies derived from 

this model. The smallest bias, standard deviation, and root mean square 

error are scattered among the estimators as well as among the three methods 

of wei^ting. As the data become more censored, however, the results tend 

to show some regularity. Tables 12 and 13 show that the conditional pro

portion retired, wei^ted by either the number of units entering an age-

interval or the inverse of the estimated variance of the hazard rate, 

consistently yields the smallest bias, standard deviation, and root mean 

square error for both Xq and X^. It is Interesting to note that a censored 

Weibull model also forces the actuarial and maximum likelihood estimates of 
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Xg to the same value. This tendency was observed in the linear model but 

did not occur with a Gongertz hazard function. 

The results summarized in Tables 2 thru 13 suggest that the bias of 

the maximum likelihood estimate tends to increase as the underlying hazard 

function departs from the assumption of a constant hazard rate within each 

age-interval. It would seem, therefore, that the bias of the maximum 

likelihood estimate should i]iQ>rove as the average service life increases 

and the width of an age-interval becomes small in relation to the maximum 

life of a property unit. This theory was tested with a linear hazard 

function containing population parameters of Xg = 0.1 and = 0.01. The 

average service life of this model is approximately 12.5 years which is 

over twice the average service life of the model used in Table 5. The 

results of this experimsat showed no significant improvement in the bias of 

the llkellhood estimate. 



www.manaraa.com

88 

sumhâey and conclusions 

The procedure used to estimate the parameters of a hazard function in 

life studies of industrial property has traditionally relied on the condi

tional proportion retired (or retirement ratio) as an estimate of the 

hazard rate for each age-interval. This so-called "actuarial method" can 

be viewed as a two-stage procedure in which estimates of the hazard rate 

are obtained from an observed life table and then used as the dependent 

variable in a weighted regression analysis to estimate the parameters of an 

assumed hazard function. 

In this study, three different estimates of the hazard rate were 

developed by nonparametric methods and compared in a Monte Carlo study to 

determine which estimator and method of weighting is best for depreciation 

applications. The major conclusions drawn from this investigation are as 

follows: 

(1) The conditional proportion retired, the actuarial estimate, 

and the maximum likelihood estimate each possess different 

attributes of a "good" estimator. However, it is difficult 

to say which attribute is the most Inqportant or which esti

mator is best for depreciation applications. 

(11) The conditional proportion retired tends to yield the 

smallest standard deviation of the estimated parameters 

regardless of the form of the underlying hazard function, 

(ill) The actuarial estimate tends to yield the smallest root 

mean square error of the estimated parameters when the 

sançle size is large and the data are uncensored. 
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(Iv) The maximum likelihood estimate tends to yield the stoallest 

bias of the estimated parameters when the form of the under

lying hazard function does not significantly violate the 

assumption of a constant hazard rate within each age-interval, 

(v) The conditional proportion retired tends to yield the smallest 

bias, standard deviation, and root mean square error of the 

estimated parameters when the data are heavily censored. 

(vi) The best method of weighting appears to depend on the form 

of the underlying hazard function. Weighting by the number 

of units entering an age-interval times the width of the 

Interval is best when the form of the underlying hazard 

function is a constant or a polynomial of the first degree. 

Weighting by the Inverse of the estimated variance of the 

hazard rate is best when the form of the underlying hazard 

function is a WeibuU distribution. The best method of 

weighting is indeterminate when the form of the underlying 

hazard function is a Gonpertz distribution. 

The conclusions drawn from this study raise a number of interesting 

questions that may warrant further investigation. For example, it was 

found that the maximum likelihood estimator provides a reasonably good 

estimate of the population parameters when the form of the underlying 

hazard function does not significantly violate the assumption of a constant 

hazard rate within each age-interval. It is possible that this assumption 

could be met if the age-intervals are small in relation to the average 

service life of the units installed at age zero. It would be interesting, 

therefore, to repeat this investigation for average service lives in the 
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range of 20 to 40 years and observe the statistical properties of each 

estimator and method of weighting as a function of the average service 

life. 

It was also found that the estimators are reasonably consistent when 

the form of the underlying hazard function is a constant or a polynomial of 

the first degree. It would be interesting to generalize this model to 

include quadratic and higher terms. Thus, one might consider a model of 

the form 

A(t) " Xq + Alt + A2t^ + . . . + A^t™ 

which is commonly used in life studies of industrial property when the form 

of the uaderlying hazard function is assumed to follow the Iowa-type sur

vival functions. It may be that subsequent fitting of the smoothed survi

vorship function to the Iowa curves would introduce a different criterion 

for measuring the statistical properties of the estimators. In this con

nection, an attempt was made to fit first, second, and third degree poly

nomials to the three estimates of the hazard rate followed by fitting the 

smoothed survivorship function to the Iowa curves. The results suggested 

that the actuarial estimate and the maximum likelihood estimate may yield 

a shorter average service life than the conditional proportion retired. 

Finally, it should be emphasized that the end result of life analysis 

is the estimation of a proper depreciation accrual rate based upon 

engineering judgement of events likely to occur in the future. This 

suggests that one should not go too far in attempts to polish statistical 

methods; the effort may exceed the usefulness of the results. 
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APPENDIX A; DERIVATION OF THE h-SYSTEM OF SURVIVAL FONCTIONS 

Consider the function 

*(t) = —^ exp{-t^/2}; - oo < t < <» (33) 

which Is the well-known "normal" probability density function (p.d.f.) 

of a random variable T with mean v « 0 and variance = 1.0. Clearly, 

since *(t) Is defined over a range which Includes values of t approaching 

^(t) cannot be used to describe the probability distribution of the • 

service life of a unit of property. 

It Is a simple matter, however, to construct a linear transformation 

of t and truncate a portion of *(t) such that the transformed variable 

describes the service life of an asset and the portion of <j>(t) remaining 

after truncation satisfies the properties of a density function. This 

construction can be visualized from Figure 1 which shows $(t) truncated 

at some arbitrary distance h from t = 0. 

0 

Figure 1. A truncated standard normal density function. • 
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This point of truncation can be related to the service life of an asset by 

letting t = -h represent the point in time at which a unit of property is 

installed. By definition, t = -h is taken to be age zero. Thus» 

T' = T + h can be defined as a new random variable with a p.d.f. given by 

the portion of $(t) remaining after truncation. The mean or expected 

value of T' is easily obtained by letting 

which is simply the area under the portion of *(t) remaining after trun

cation, and calculating the first moment of T* about t = -h. Thus, using 

Kimball's (42) notation for the expected value of T*, we obtain 

*(t)dt (34) 

E[T'] w 

(t+h)4»(t)dt t'*(t)dt 

*(t)dt 

t$(t)dt + h 4>(t)dt 

$(—h) 

/: t*(t)dt + h$(-h) 
(35) 

4(-h) 
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Now, using Equation 33 we can write 

/
t*(t)dt * —^ I t exp{-t^/2}dt 

h i^ïr J —h 

which is easily evaluated by letting 

t^/2, dz = tdt 

and noting that z = h^/2 when t = -h. Thus, 

/
t$(t)dt « I exp{-z}dz 

•h V5ir Jh^/2 

^• exp{-h^/2} 
v2ir 

*(-h). 

Using this result with Equation 35 we obtain for the mean of the truncated 

distribution 

W • (36) 

The location of w in relation to t = 0 can be visualized from Figure 

2 which also shows the location of w in terms of a new random variable 

TVW. 
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t'/w* 

Figure 2. Relationship between w and various 
transformations of t. 

Our motivation for constructing T'/w becomes apparent when we observe 

that the mean or expected value of T'/w is 1.0. In other words. 

E[T'/w] = 

L I-

= 1.0 

*(t)dt 
—h 

i^ch is precisely the result we would obtain if t'/w was taken to repre

sent the service life of an asset divided by its life expectancy at age 
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zero. This relationship can be expressed in terms of t by letting x 

represent the service life of an asset (i.e., the age of an asset when it 

is retired from service) and L represent its life expectancy at age zero 

(i.e., average service life). Then, by definition. 

= X 
V L 

from which it follows that 

« X 
w L 

and 

t = w(x/L) - h. (37) 

Now, from our previous use of Equation 33 and 34 it should be clear 

that the p.d.f. of T for $(t) truncated at t = -h can be written as 

f(t) = ; -h f t < ®. (38) 

From Equation 38 it follows that the probability Pr[T > t], which we 

denote by S(t), is given by 

S(t) = Pr[T > t] = 1 - m f(s)ds = I f(s)ds 

$(-h) 4(s)ds = 1^ ; -h < t < ». (39) 
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Equation 39 is, of course, the probability statement used in Equation 

9 to define a survivorship function. We can, therefore, use Equation 37 as 

an expression for t and write the probability that a unit of property 

survives (i.e., remains in service) beyond age x as 

s w  -  "  : o< x < - .  (4 0 )  

Thus, Equation 40 defines a two parameter distribution which describes the 

h-System survivorship function. The general shape of this function for 

various values of h can be visualized from Figure 3, which has been 

reproduced from Kimball (42). 

no 

•0 

> M 

*» 4C 

20 

SO m 
ACC AS KR CENT OF SERVICE LIFE 

aoo 230 

Figure 3. h-System survivorship functions. 

The relationship between a retirement frequency function f(x) and a 

survivorship function S(x) is given by Equation 8 and 9, i.e.. 
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f (x) 

which, for the h-System becomes 

f(x) 

-dS(x) 
dx 

-d$(wx/L - h) 
$(-h)dx 

= (41) 

The general shape of the function given by Equation 41 for various 

values of h is illustrated in Figure 4, vhich has also been reproduced 

from Kimball (42). 

000 250 JO 100 uo 
net AS MOratTIQN OF Avowee SCKVICC Lire 

Figure 4. h-System retirement frequency functions. 
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Thus, a life table for the h-System can be generated from Equation 41 

by evaluating 

•/: 
.X2 

w 1 <j)(wx/L - h)dx 

"*1 

L*(-h) 

for each age-interval where xj and X2 denote age at the beginning and end 

of a given interval. This calculation has been computerized (61) using 

Simpson's Rule to evaluate the integral and a table of the normal proba

bility function to obtain *(-h). 
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APPENDIX B: PROGRAM LISTING OF THE ACTUARIAL METHOD OF LIFE ANALYSIS 
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PROGRAM fOENTIFlCATION 

**$#$#$**####$##*###*#***##*###*$##$*#* 

• ACTUARIAL METHOD OF LIFE ANALYSIS « 
* WRITTEN 8Y A.O. KENNEDY 7/70 * 
* REVISED BY A.O. KENNEDY 10/70 • 
• TEXAS MEDICAL CENTER * 
* REVISED BY R.E. WHITE 12/76 • 
• NORTHERN STATES POWER COMPANY • 
*»#*#»«#$$########$###$*##«#*##*#*##»## 

CARD INPUT FORMAT - TWO TYPES OF DATA CARDS ARE REQUIRED FOR 
EACH SET OF RETIREMENT DATA. ANY NUMBER OF ANALYSES MAY SE 
RUN FOR EACH SET OF DATA AND ANY NUMBER OF SETS OF DATA ARE 
ALLOWABLE. 

o
 

o
 

61-63 JMAX 

cc. 66-74 XENT 

cc. 77 METHOD -

( I I  ANALYSIS INFORMATION CARD 
CC. 1-8 ACNTNO - A UNIQUE 8-CHARACTER ALPHAMERIC NAME 

OR NUMBER ASSIGNED TO EACH DIFFERENT 
SET OF RETIREMENT DATA, (A8I. 
NUMBER OF AGE-INTERVALS, 0 LT. JMAX 
IE. 100, 1131. 
NUMBER OF UNITS ENTERING THE INI
TIAL AGE-INTERVAL* fF9.0). 
METHOD USED TO ESTIMATE HAZARD RATE. 
1 - CONDITIONAL PROPORTION RETIRED. 
2 - ACTUARIAL ESTIMATE. 
3 - MAXIMUM LIKELIHOOD ESTIMATE. 

121 INTERVAL DATA CARD - A SET OF INTERVAL DATA CARDS FOLLOWS 
THE ANALYSIS INFORMATION CARD FOR THE FIRST ANALYSIS OF 
EACH SET OF RETIREMENT DATA. THE PROGRAM REQUIRES ONE 
INTERVAL DATA CARD FOR EACH AGE INTERVAL II.E.. «JMAX* 
ARE REQUIRED}. 
CC. 11-19 TINTVIII - LONER LIMIT OF THE I-TH TIME 

INTERVAL, TINTV(l) GE. 0» FI9.21. 
CC. 22-30 XOKII - NUMBER RETIRED IN THE I-TH AGE-

INTERVAL, XOKIl GE.O, (F9.01. 

THE ELEMENTS IN COMMON STORAGE ARE DEFINED AS FOLLOWS: 
NINT - NUMBER OF AGE-INTERVALS MINUS ONE 
TINTV - INITIAL AGE-INTERVAL VALUES 
TMIO - AGE-INTERVAL MID-POINTS 
TWID - AGE-INTERVAL WIDTHS 
XNI - NUMBER EXPOSED IN EACH AGE-INTERVAL 
XDI - NUMBER RETIRED IN EACH AGE-INTERVAL 
HAZD - HAZARD RATE IN EACH AGE-INTERVAL 
VHAZD - VARIANCE OF HAZARD RATE IN EACH AGE-INTERVAL 

DATA SET REFERENCE NUMBERS ARE IDENTIFIED AS FOLLOWS. 
IN - CARD READER. 
LINE - LINE PRINTER. 
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C NâlN PROWAM 
C 

COMMON NtNTtTINTVI100)»TNIOI1001«TM10llOO)«XN!I1001•XOK1001f 
HAZOi 1001 tVHA20l 1001 «BUFFtl 100,361 

C 
DIMENSION CLAMOf4.31«VLAN0< 4,31,SELAM0t4t3l•CLAMIC3»3,3I* 

SELAM&{3.3],PAftBUFf7«121«ALABf4«81,NUNI4},FLNBUF(4.3l, 
HAZBUFf100,12),PI 100,121«SURBUF(100,121«PROBUF1100,121, 
CSO<41*PCSO(4),NUNP1(31,SURCUNI100},OENI100} 

C 
EOUIVA.ENCE (BUFF6I1,11,HAZBUFC1,111,IBUFF6I1,131,SURBUFI1.11). 

IBUFF6I1,25)«PROBUFf1,111 
REAL'S ACNTNO.BCNTNO 
REAL*4 0ESCRI201 
DATA NUM/1,2,3,4/ 
DATA NUMPI/2,3,4/ 
DATA M/5/, LINE/10/, lGOEl/8/, 1CDE2/7/ 
DATA AL AB/4HLAMB,4H0A-O,4H ,4H 

4HVARf,4HLAMB,4HDA-0,4H1 
4HST«E,4HRR0R«4HILAM,4H-0I 
4HLANB,4H0A-1,4H ,4H 
4HVARI,4HLAHB,4HDA-1,4H1 
4HST.E,4HRR0R,4HILAM,4H-1I 
4HC0VI•4HLAM-,4H0,LA,4NH-1I 
4HLN-L,4H1KEL,4HIH00,4HD 

C 
C INPUT ANALYSIS DESCRIPTION CARD 
C 
10 REA0(IN,240,END»5301 ACNTNO,!OESCRCII,I«1,121,JMAX,XENT,)«TH0D 

C TEST FOR NEW PLANT ACCOUNT 

IFfACNTNO.EQ.SCNTNOI GO TO 50 
BCNTNO « ACNTNO 

C 
C INPUT INTERVAL DATA CARD 
C 

READI IN,250) ITINTVdl, XDIIII» I«1,JNAX1 
C 
C COMPUTE SURVIVORS ENTERING EACH AGE-INTERVAL 
C 

XNIIll - XENT 
NINT > UMAX - 1 
00 20 l»l,NINT 
XNIII«11 « XNIIll - XDIfll 

20 CONTINUE 
C 
C DELETE INTERVALS AFTER ALL ARE RETIRED 
C 

NINT - UMAX 
30 IFtXNllNINTl.GT.O.OI GO TO 40 

NINT - NINT - 1 
IFININT.GT.OI 60 TO 30 

C 
C ERROR - NO. ENTERING 1ST INTERVAL LESS THAN OR EQUAL TO ZERO 
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C 
URITEtLINEt 2601 
60 TO 530 

C CALCULATE WIDTH AND MIDPOINT OF ASE-1NTERVALS 

40 1FININT.E0.JMAXI MINT « JMAX - 1 
CALL WIOMID ITlNTVtJMAXtTMlD.TMlOl 

C MRITE HEADING 

SO MRITEfLINEtZTOJ ACNTNO, {OESCRID «I-IvIZl 
GO TO (60,70.801, METHOD 

60 HPITEILINE.490I 
GO TO 90 

70 WRITEtL INE.SOOl 
GO TO 90 

80 MRITEIL1NE»5I01 
90 CONTINUE 
C 
C 
C 

CALL 
C 
C 
C 

CALL 
CALL 
CALL 

C 
c 
c 

CALL 
C 
c 
c 

00 110 MM«1.4 
DO 100 MW«1»3 
NMl « NM • 1 
J « ((NN-1I*3I • MW 
PARBUFd.J} • CLAMOIMN^MUI 
PARaUF(2,Jl > VLANOIMM.MW) 
PARBUFI3.JI • SELAMOIMM.MW* 
IFCNNULE.OI GO TO 100 
PARBUFf4tJI > CLAMltMNi»NH»Il 
PARBUF(5«J1 « CLAMltMNltNH«2} 
PARBUFf6tJI « SELAMIIMNltMWl 
PARBUFITtai » CLAMl(MNltNU,3| 

100 CONTINUE 
110 CONTINUE 
C 
C CHECK RANGE OF MODEL 1 AND MODEL 4 PARAMETERS FOR EACH HEIGHT 
C 

DO 140 MM-1,3 
MM » 1 

COMPUTE LIFE TABLE 

LIFETB ISURCUM.DEN.FLNLSM.METHODtLINEI 

INITIALIZE BUFFERS 

SETR C0.0,PARB(^«84I 
SETR tl.0,FLNBUF.l2) 
SETR *1.0,BUFF6,3600» 

COMPUTE LEAST SQUARES SOLUTION 

LSQEST ICLAMO,VLAMO,SELAMO,CLAM1,SEIAM1» 

POSITION PARAMETER ESTIMATES IN BUFFER FOR OUTPUT 



www.manaraa.com

110 

120 lF{aMO(NN*NU|«eE.O.OI GO TO 130 
IFtm.EQ.U miTE(LlNE««301 MM.MW 
WRlTEtLINE.440i MM#MW 
M « (C*IM-ll*3t * MM 
IFCMM.EO.ll CALL SETR I0.0»HAZBUFIt»M}«NIMTI 
CALL SETR COeO.SURBUFt ltN),NINT«-ll 
FLNBUFlNMtNUl • 0.0 

130 GO TO 140 
MM * 4 
GO TO 120 

140 CONTINUE 

C COMPUTE HAZARD FUNCTION 

CALL HAZFCN tCLANO«CLANl»FLNBUF«LINE1 

C COMPUTE SURVIVAL FUNCTION 

CALL SURFCN (P,LINE,FLN8UF,CLAM1,CIAM0I 

C COMPUTE LN-LIKELIHOOO FOR EACH MODEL 

CALL LNLIKIP.FLNBUFJ 

C PRINT OUTPUT BUFFERS 

URITEIL 1NE.300) 
URITECLINE.ZBOI 
URITE(L1NE« 2901 
MRtTEILlNE.310} (NUMt II. 1*1,4* 
WRITE(LiNE.320l f(NUNC II. I«1.3I» J»1.4I 

C 
C OUTPUT PARAMETER ESTIMATES 

MRlTEtLINE.3301 CIALABCJ.II. J»1.4I. IPARBUFCI.Jl• J«1.12). 1*1.31 
WRITE (LINE, 340* KALABfJ.I). J«lt«). CPARBUFCl .Jl. J«4«12l. 1«4*4) 
WRITEILINE.350I (ALABIJ.71. J«1.4I. IPARBUFC7.J1• J«7.12} 

C 
C OUTPUT LN-LIKELIHOOD VALUES 

URITEILINE.3601 CALABCJ.Bl. U»1.4*. (IFLNBUFCl.Jl• J>1.3}. 1«1.4I 
C 
C COMPUTE PROBABILITY DENSITY FUNCTION 
C 

DO 160 I'l.NlNT 
DO 150 J>1.12 
PRDBÛFfl.JI > NAZBUFfI*J1«PRDBUF(I.J} 

ISO CONTINUE 
160 CONTINUE 
C 
C PRINT ESTINATES OF HAZARD FUNCTION. SURVIVORSHIP FUNCTION. 
C AND PROBABILITY DENSITY FUNCTION 

00 ITO KK*lt3 
IFCKK.EQ.il MRITE(I>INE.370I 
IFfKK.EQ.2l MRlTEfLINE.4101 
IFIKK.EQ.3I MRITEtLINE.4201 
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IB • l(KK-t)«12} • I 
IE « IS • il 
MRITEIL INE*310I (NUNIll, I«l«4| 
URITEILINE.BSO} (INUNIH* I-I»3J«J-lt4) 
WRITEIL1NE.390I ITINTVIIIf {BUFF6II*Jlt J-IB.IEI» I=1,NINTI 
1FIKK.E0.2I MRlTEILINEt390l TINTVCJHAXItlBUFF6tJIUX*Jl«J«l«lBtIE) 
IFIRKJIE.21 WRITE!LINE«400I TINTMJMAXl 

170 CONTINUE 
C 
C DETERMINE IF DATA ARE EXPONENTIAL 
C 
C CHOOSE LARGEST LN-LIKELIHOOO FOR MODEL 1 

BLNL • n.N8UFCl«ll 
N8LNL • 1 
DO 180 I"2,3 
IFIR.NBUFI1. n.LE.BLNLI GO TO 180 
BLNL • FLNBUFtl*!} 
NBLNL « I 

180 CONTINUE 
C 
C COMPUTE A CHl-SQ. WITH 1 O.F. AND ASSOCIATED PROBABILITIES 
C FOR MODEL 1 VS 2, 1 VS 3$ AND 1 VS * FOR THE WEIGHT SELECTED 
C ABOVE 

DO 190 1-2,4 
CSQ(I-l) - 0.0 
PCSQ(i-l) « 0.0 
IFfFLNBUFtl.NBLND.EQ.O.OI GO TO 190 
CSQII-IJ - 2.0«ABS(FLNBUFC1»NBLNL1 - FINSUF*I,NBL%U: 
PCS0C1-1> - CHISQ(CSQCI-1>,1) 

190 CONTINUE 
C 
C CHI-SQ (.OS* WITH i O.F. "3.8416. IF mlL ARE LT. 3.94ié 
C CONSIDER DATA EXPONINTIAL - OTICRWISE SELECT MODEL WITH THE 
C LARGEST LN-LIKEHHOOD 

MM m 1 
CMN « 0.0 
MW » NBLNL 
DO 200 I" 1,3 
IFICSOtIl.EQ.O.OI GO TO 200 
IFfCSeiIl.GT.3.84161 GO TO 210 

200 CONTINUE 
GO TO 230 

210 MM «1 
MW « 1 
FM « aNBUFCl,ll 
DO 220 LM >1,4 
00 220 LM •1,3 
IF(n.NBUFILN,LM}.EQ.O.OI GO TO 220 
IFfFLNBUFILN,LHJU.E.FII) GO TO 220 
MM « LM 
MW « LW 
FM • aNBUFILM.LWI 

220 CONTINUE 
230 CONTINUE 
C 
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C 3CTERN1NE GOODNESS OF FIT OF NOOEl CHOSEN 
C 
C COMPUTE CHl-SQ. WITH CS-l-K) D.F. WHERE S- NO. OF INTERVALS 
C AND K« THE NO. OF PARAMETERS IN THE MODEL, AND ASSOCIATED 
C PROBABILITIES FOR SAMPLE DATA VS. CHOSEN MODEL 

CSQ(41 « 2.0 * ABSIFLNLSM - FLNBUFIMN.MH)1 
K « I 
IF(MM.6T.l) K . 2 
lOF • NINT - JC 
PCS044X • CHlS0CCSai4l« IDF) 

c 
C PRINT RESULTS OF SELECTING BEST FIT 

KRITEIL INE.450) CNUMPUII, NBLNLt CSQXI), PCSQIII, I-lt3) 
IFIMN.EO.ll WRirEILINE*4«0} NBLNL 
IFtNNJ4E.ll MRITEIL1NE«4T01 MM. NBLNL 
WRITEIlINE,480) MM. MM, FLNBUFtMM.MMl• FLNLSM. MM. MM. CSQ(4#, 

IDF, PCSQf4» 
C 

GO TO 10 
C 
C FORMAT STATEMENTS 
C 
240 F0RMATlA8,2X,L2A4,2X.I3,2X.F9.0.2X«tll 
250 FDRMATI10X.F9.2.2X.F9.0) 
260 FORMAT*//,* ANALYSIS TERMINATED. NO. OF UNITS ENTERING FIRST AGE-

. INTERVAL IS LESS THAN OR EQUAL ZERO.*) 
270 FORMAT!IH1.//.37X.A8.2X,12A4I 
280 F0RNATI////.10X.•MODEL 1 « EXPONENTIAL*•/•10X.*N00EL 2 « LINEAR *. 

. •HAZMOS/»10X. «MODEL 3 « GOMPERTZ * ,/$10%, ' MODEL 4 " WEI BULL** 
290 FORMAT(//,IOX.*WEIGHTUII « 1.•./.lOX.*UEI6HT2CIi > 1. / V*t/«10Xt 

. *MEtGHT3(I) * NCI) * H{I)*I 
300 FORNATI IH1.////.49X* «ESTIMATES OF PARA^TERS*) 
310 FORMAT*I/,2BX.41'MODEL *.11.19X111 
320 FORMAT!20X.4(31 • UT ',11,2X1,2X1) 
330 FORMAT!211X.4A4,IX,4!3F8.4.2X1,/l,1X,4A4,&X,4!3F8.4,2X)1 
340 FORMAT!2!1X,4A4,27X,3!3F8.4,2X1,/),1X,4A4,27X,3!3F8.4,2XI1 
350 FORMAT!IX,4A4,53X,2!3FB.4.2X11 
360 FORMAT!1X.4A4,IX,4!3F8.2,2X11 
370 FORMAT!////•47X,«ESTIMATES OF HAZARD FUNCTION*! 
380 FORMAT!IX.* INTERVAL START*,5X,4I3I * UT *,11,2X1,2X11 
390 FORMAT!4X,F7.2.7X,3F8.4.2X,3F8.4,2X.3F8.4,2X,3F8.4! 
400 FORMAT!4X.F7.2.12X,4!3!*«••«6X1.2X1) 
410 FORMAT!1HI,////.44X.'ESTIMATES OF SURVIVORSHIP FUNCTION'! 
420 FORMAT!////,41X,'ESTIMATES OF PROBABILITY DENSITY FUNCTION*! 
430 FORMAT!//.* MODEL ,11,*, WEIGHT ,11,* IS INAPPROPRIATE SINCE*, 

. * THE ESTIMATE OF THE HAZARD FUNCTION IS NEGATIVE.*! 
440 FORMAT!//,* MODEL ,11,*, WEIGHT ,11,* IS INAPPROPRIATE SINCE*, 

. • THE ESTIMATE OF THE SURVIVORSHIP FUNCTION IS CREATOR THAN *, 

. I.O.'I 
450 FORMAT!IHl,/////,* TEST OF WHETHER DATA ARE EXPONENTIAL*,///, 

. 5X,'MODELS WT. CHI-SO D.F. P*,3!/,5X,*1 VS *,I1,4X,I1,3X, 

. F8.3.3X,*1*,3X,F4.2)} 
460 FORMAT!///,5X,*TEST INDICATES DATA CAN BE FITTED BY MODEL 1, *, 

. *WEI6HT ,11! 
470 FORMAT!///,5X,'TEST INDICATES DATA CAN BEST BE FITTED BY NOOEL *, 
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. Il,', WEIGHT SID 
480 FOftMATI/////•• TEST OF GOODNESS OF FIT OF CHOSEN N00EL*,///*23X, 

. 'MOOEL ,11,', WT. ••ll,3X,«SAim.E OATA',/,9X.'LN-LIKELIHOOO', 

. 2ITX,F8.21,///,42X,'CH1>SQ O.F. P',/,SK,"MODEL ',11, 
• • WT. ',11,' VS. SAMPLE 0ATA',7X,F8.3,3X,I2.«X,F4.2} 

490 FORMAT!/,50X,'CONDITIONAL PROPORTION RETIRED'» 
500 FORMAT*/,56X,'ACTUARIAL ESTIMATE*1 
510 FORMAT#/,52X,'MAXIMUM LIKELIHOOD ESTIMATE') 
530 STOP 
C 

END 
C 
C -
c 

SUBROUTINE WIOMIO ITM,lNT,XM10tHl 
DIMENSION rNlll,XM10(l},Hlll 

C 
C SUBROUTINE TO CALCULATE WIDTHS AND MIDPOINTS Of GIVEN 
C AGE-INTERVALS 
C 
C THE INPUT PARAMETERS ARE DEFINED AS FOLLOWS 
C TM INITIAL AGE-INTERVAL VALUES 
C INT - NUMBER OF AGE INTERVALS 
C 

IMl * INT - 1 
00 10 I«1,IN1 
IPl • I • 1 
Hill « TNIIPII - TM(I) 
XNIOfI) - TMfl) * HII)/2.0 

10 CONTINUE 
RETURN 
END 

C 
C 
C 

SUBROUTINE LIFETB ISURCUM,DEN,FLNLSM,METHOD,11ME# 
C 
C SUBROUTINE TO COMPUTE LIFE TABLE DATA 
C 
C THE INPUT PARAMETERS ARE DEFINED AS FOLLOWS, 
C XNI - NUMBER ENTERING AGE-INTERVAL 
C 
C THE OUTPUT PARAMETERS ARE DEFINED AS FOLLOWS, 
C SURCUM - CUMULATIVE PROPORTION SURVIVING (I.E., THE 
C SURVIVORSHIP FUNCTION FOR THE SAMPLE DATAI 
C DEN - PROBABILITY DENSITY FUNCTION FOR THE SAMPLE DATA 
C 

0IMENSION DYPN(100*,SURPNC100),SURCUH(1001,DEN(100)«SCSURI1001, 
SOENtlOO),SHAZI100),ELIF(100),PLS(100),SELIF(100)tPLI2l 

C 
COMMON NINT,TINTVC100),TMIOI1001•TUID(100)•XNI4100)«XOS C1001• 

HAZOf100),VHAZOC100),BUFF6f100,361 
C 

DATA PL/IH tlH*/ 
C 
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C INITIALIZATION 
C 

INTPl > HINT • I 
SURCUNCll « 1.0 

c 
C COMPUTE NO. EXPOSED AND PROPORTION RETIRED 
C 

DO 80 l«lffINTPl 
C 
C IN THE FINAL INTERVAL XNI IS ALLOWED TO BE ZERO 
C 

1F(I.NE.INTP1 .OR. XN1(II.NE.0.0) GO TO 10 
DYPNtll • 0. 
GO TO 20 

10 OYPN(I) « XOK I)/XNI(II 
C 
C CORRECT FOR OYPN « 0 OR OVPN - 1 
C 

IFIOYPNf lI.EQ.l.Ol OVPN(I) • IXNKI} - 0.5)/XNICII 
IFIOVPNdl.EO.O.Ol OYPNIIl « 0.S/XNI1I» 

C 
C COMPUTE PROPORTION SURVIVING ANO CUMULATIVE PROPORTION 
C SURVIVING 
C 
20 SURPNCI) » 1.0 - OYPNIIl 
30 IFlI.ea.II GO TO 40 

IMl . I - 1 
SURCUM::; = SURPNCINU * SURCCMIIMII 

C COMPUTE PROBABILITY DENSITY - UNDEFINED IN THE LAST INTERVAL 

ûetliHÎI - iSuRCUnilNiS - SURCUMCC/TWIB::*!: 

C COMPUTE HAZARD AND VARIANCE OF HAZARD 

40 IFd.EQ.INTPll GO TO 80 

C BRANCH TO SELECTED METHOD FOR ESTIMATING HAZARD RATE 

GO TO 150,60,701, METHOD 

C ACTUARIAL METHOD ONE 

50 HAZDCIl « OYPNfII/TMIOCII 
VHAZOIII « DYPNII)*SURPN|||/XNllll/THIDtll**2 
SHAZIll > SQRTCVHAZDIIII 
GO TO 80 

C 
C ACTURIAL METHOD TWO 
C 
60 HAZOtn « 12.0 « DYPNIItl/ITNIOUl • 11.0 * SUMNIIIII 

VKAZDdl « IIHAZDil) $# 2I/IXNI(I1 • (1.0 - SURPNIlllll * 
11.0 - (IHAZOII» • TW10(I>»/2.0) •» 21 

SHAZIll • SORTIVHAZOdll 
GO TO 80 
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c 
C MAXIMUM LIKELIHOOD METHOD 
C 
70 HAZO(I) • -ALOGISURmilll/TWtOdI 

VHAZOIII • DYPNI II/CtTWIDII) *• 21 * XNI«II • SURPNdJ) 
SHAZ(I) • SQRTCVHâZOllll 
CO TO SO 

C 
80 CONTINUE 
C 
C STANDARD ERROR COMPUTATIONS 
C 

00 110 I>1>INTP1 
SUNl « 0.0 
IF(l.EQ.l) GO TO 100 
IMl " I - 1 
DO 90 IM-lilNl 
SUNl « SUNl * (DYPNIIM})/(XNI(IMI * SURPNIINIl 

90 CONTINUE 
100 VCSUR * fSURCUMCIl •• 21 $ SUMl 

SCSUftCIl - SQRTI VCSUR) 
IF<1.EQ.INTP1) GO TO 110 
Ql « (tSURCUN(l) • DYPNIin *• ZI/ITHIOII) •• 21 
02 « SUMl * (SURPNf 1)/(XNH11 • OYPNIIIll 
VDEN a 01 * Q2 
SOEN(I) - SORT* VDEN » 

110 CONTINUE 
C 
C MEDIAN LIFE EXPECTENCV COMPUTATIONS 
C 

DO 150 I>ltNINT 
PSRCH » 0.5 • SURCUMIt) 
DO 120 IP>1»INTP1 
IPMl » IP - I 
IFIPSRCH.LT.SURCUMdNTPlll GO TO 140 
IFtPSRCH.GT.SURCUN(IP) .AM). PSRCH.LE.SURCUMtlPMllI 60 TO 130 

120 CONTINUE 
130 ELIF(I) « ITINTVCIPMII - TINTVd}) * (TWlDCIPMil $ f(SUftCUNClPMl) 

- PSRCHl/ISURCUMdPMl) - SURCUNIIPI) 11 
PLS(I) « PLdl 
SELIFdl « SQRTdSURCUNd) ** 21/(4.0 * XNIlt) * OENIIPMII 

21) 
GO TO 150 

140 ELlFd) » TINTVdNTPlI - TINTVd) 
PLSIII > PLI2I 
SELIF(I) « 0.0 

150 CONTINUE p 
C CALL «LNLIKS* TO CALCULATE LM-LIKELIHOOO FOR SAMPLE DATA 
C 

CALL LNLtKS (XDItXNItSURCUMtNINTtFLNLSM) 
C 
C PRINT LIFE TABLE 
C 
160 NRlTEILINEtlTOI 
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WRlTEILINEtlBOl ITtNTVIII* THIOID* TUIOIll. XNIIll* XOIll). 
OVPNIlIf SURPN11I» SURCUMIt)* OENUft 
HAZOlIlt SCSURIU» SOENd}» SHAZIII. ELIFIII. 
PLSII1» SELIFd}, I-l.NlNT) 

URITEIL 1NE«190I TINTVIINTPl) t XNIIINTPll* XOMINTPll. 
0YPNIINTP1I» SURPNllNTPlle SURCUNIINTPI»• 
SCSURllNTPl) 

WRITEILINE. 2001 
WftITE(LlNE*210l FINLSM 
RETURN 

C 
C FORMAT STATEMENTS 
C 
170 FORNATt////, sax. «LIFE TABLE 0ATAS//.9X»* INT MIO I NT',2*' 

NO.*;,' PROPN PROPN CUM PROS HAZ0*,3(' ST ER'I,' 
HE0',5X,'ST ER',/,8X,* START POINT WIDTH ENTER RETIRE 

.RETIRE SURV PROPN DENS RATE CUM PROS HAZD LIFE 
LIFE*t/t66X,*SURV',17X,*SURV DENS RATE EXPECT EXPECT') 

180 FORMAT (7X,F6.1,F8.2,F7.2*2F9.0,3F8.4,5F7.4,F9.4,A1»F8.4) 
190 FORMAT {7X,F6.1,6X,••«*,5X,•***,2F9.0«3F8.«*2(5X,'•••),F7.4,2C5X,* 

.•••l,8X,'»»,7X,*«'» 
200 FORMAT *////,7X,' $ INDICATES NO MEDIAN LIFE EXPECTANCY CAN 

.BE CALCULATED FOR THIS ENTRY.*/,7X,• *# CALCULATIONS INVOLVIN 
.G INTERVAL WIDTH FOR LAST INTERVAL HAVE NO MEANING.*) 

210 FORMAT l////,7X* LN-LIRELIHOOO FOR SAMPLE DATA - •,F12.2) 
END 

C 
C —• - -
c 

SUBROUTINE SETR (FINDX,FIN,N) 
C 
C SET H ELEMENTS IN FLOATING POINT ARRAY FIN 
C EQUAL TO THE FLOATING POINT CONSTANT FINDX. 
C 

DIMENSION FINll) 
DO 10 I*1,N 
FINII) « FINDX 

10 CONTINUE 
RETURN 
END 

C 

C 
SUBROUTINE ISQEST ICUNO»VLANO»SELANO»CLAMl,SELAfU) 

C 
C LEAST SQUARE ESTIMATES OF HAZARD RATES 
C 
C THE INPUT PARAMETERS ARE DEFINED AS FOLLOWS. 
C TMID - AGE-INTERVAL MIDPOINTS. 
C XNI NUMBER ENTERING EACH AGE-INTERVAL. 
C HAZD - HAZARD RATE IN EACH AGE-INTERVAL. 
C VHAZD - VARIANCE OF HAZARD RATE IN EACH AGE-INTERVAL 
C NINT - NUMBER OF AGE-INTERVALS. 
C 
C TME OUTPUT PARAMETERS ARE DEFINED AS FOLLOWS. 
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CLANO - LAMBDA-0 VALUES. 
VLANO - VARIANCE OF LAMBDA-0. 
SELAMO - STANDARD ERROR OF LAMSDA-0 
CLANl - LAMBDA-1 AND VARIANCE OF LAM8DA-1 VALUES. 
SELAMI - STANDARD ERROR OF LAMBDA-1. 

COMMON NINT,TlNTVf100)«TMlDf100)«THlOf100),XNII100),XDIf100)* 
HAZOf100)«VHA20f100)«BUFF6(100«36) 

C 
DIMENSION Vf 100,100),Mf100.100),TA(100,1),¥(100,1),TBf100,2), 

TAT(1,100),T8T(2,100),VHAZ(100,4)«TEMPd,100),SELAM0(4,3), 
TEAfl,I),PLtl,100),TEMPB(2,100),T2(2,2).PLBf2,lOO), 
A234(2,1),CLANO(4,3),CLAM1(3,3,3),VLAM0(4,3),SELAM1(3,3) 

C 
DATA LINE/10/ 

C 
C 
C 
C EXPAND VARIANCE OF HAZARD FOR 4 MODELS. 
C 

00 10 1>1,NINT 
DO 10 J«l,4 
VHAZ(1,J) - VHAZO(I) 

10 CONTINUE 
C INITIALIZATION 
C 

00 20 1*1,4 
00 20 J«l,3 
CLAN0(1,J) « 0.0 
VLAN0(I*J) » 0.0 

20 CONTINUE 
DO 30 1*1,3 
00 30 J«l,3 
00 30 K«l,3 
CLAM1(I,J,K) m 0.0 

30 CONTINUE 
C 
C MM IS MODEL, MM IS MODEL HE16HT. INITIALIZE AND INCREMENT. 
C 

MM « 0 
40 MM a MM • 1 

tF(MM<«T.4) GO TO 360 
MM " 0 

SO MH • MW • 1 
1F(MU«6T.3) CO TO 40 

C 
C FILL V» TR, H, AND V MATRICES UITH HAZARD RATE, MIDPOINT Of 
C ACE-INTERVAL, NODEL WEIGHT, AND VARIANCE OF HAZARD. 
C 

CALL SETR (0.0,V*100QP) 
CALL SETR (0.0,W,10000) 
DO 110 I*1,NINT 
GO TO (60,T0,80,90)« MM 

60 TA(1,I) « 1.0 
V(Itl) » HAZDIII 
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V(I.It > VHAZ(I,MM* 
CO TO 100 

70 TBdtl) * 1.0 
TBI 1.2) * TMIDCI) 
Yd,II « HAZOII) 
V(I*I} « VHAZ(I,MMI 
CO TO too 

80 TSdtl) * 1.0 
T8( 1,2) » TNIOIlf 
Y(I,1) • ALOClHAZOf11) 
V( I«n  « VHAZ(l.MMJ/IHAZ0ni**2) 
CO TO 100 

90 TBI 1,1) * 1.0 
TBI 1.2) » AtOGITMIOID) 
YII.l) « ALOGIHAZOI1)) 
V(f,I) « VHAZtI*MM)/IHAZ0I1)**2) 

100 HI I, 1) « 1.0 
IFIMW.E0.2) Mil,;* > 1.0/VfI,I) 
1F(MH.EQ.3) Mil,I) * XNlll)*TMIOn) 

110 CONTINUE 
C 
C FIND LITRANS) » IITITRANS) • M • Tl -I) • TlTRANSl • W 
C 
C FIND TlTRANSl 

NR - NINT 
NC « 1 
IFIHM.GT.l) NC « 2 
(FINC.EO.2) GO TO 130 
00 120 1*1, NINT 

120 TATIl.ll » TAII.ll 
GO TO 150 

130 DO 140 1«1,N1NT 
DO 140 J«l,2 

140 TBTU,I I - TBII.U) 
150 CONTINUE 

IFINC.EQ.2I GO TO 200 
C 
C MULTIPLY TAT BY U TO TEMP GIVING TlTRANSl * U 

00 160 I«1,NC 
00 160 J«1,NR 
TEMPI I* J1 « 0.0 
00 160 K*1,NR 

160 TEMPII.Jl « TENPII»JI * TATII,KI«HtK,Jl 
C 
C MULTIPLY TEMP BV TA TO TEA GIVING TlTRANSl * U « T 

TEAIl,!) « 0.0 
00 ITO KoltNINT 

170 TEAIl,!* « TEAIl,1* * TEMPI1«K**TAIK,1* 
C 
C FIND INVERSE OF A 1 BY 1 MATRIX GIVING 
C ITITRANSI * W * Tl $* -1 

TEAIl,II • I.0/TEAI1,11 
C 
C MULTIPLY TEA BY TAT TO TEMP 

00 180 JaltNINT 
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lao TEMPfltJ) - TEAIl«l}*TATtl«JI 
C 
C MULTIPLY TEMP BY W TO PL 

00 190 J»1$N:NT 
PL(1*J> - 0.0 
00 190 K-UNINT 

190 PLIltJI • PLfltJI * TEMPIl*K}*UtK»JI 
60 TO 250 

200 CONTINUE 
C 
C MULTIPLY TBT BY U TO TEMPB 

00 210 I"1,NC 
00 210 J«1*NR 
TENPBIltJI « 0.0 
00 210 K"1,NR 

210 TEMPBIltJI » TEMPBdfJI • TBTn*Kl*UIK*JI 
C 
C MULTIPLY TEMPB BY TB TO T2 

DO 220 I-1.2 
00 220 J-1,2 
T2(I«J) > 0.0 
00 220 K-1»NINT 

220 T2(I,U) • T2(ItJl * TEMPB(I»Kl*TBfK.JI 

C FIND THE INVERSE OF T2t A 2 BY 2 MATRIX • lO/OET -B/DET) 
C IC/OET A/DET) 

OETE * T2(ltl)*T2l2t2l - T2(1•21*T2C2*1) 
ALl • T2f2.2}/0ETE 
ALT « t-T2llt2})/0ETE 
AL3 » f-T2l2»l)l/0ETE 
A14 » T2tl*ll/0ETE 
T2(l,ll « ALl 
T2(l#2» » ALT 
T2(2tll » AL3 
T2(2t2) • AL4 

C 
C MULTIPLY T2 BY TBT TO TEMPB GIVING 
C HT*TRANS) « W • T) «• -1) • TfTRANS) 

00 230 I«l«2 
00 230 I.N INT 
TEMPBd.J} » 0.0 
00 230 K«l,2 

230 TEMPBIItJ) « TEMPBtltJI * T2CItKMTBTIKtJ) 
C 
C MULTIPLY TEMPB BY M TO PLB GIVING L(TRANS! 

00 240 1*1.2 
00 240 J*1«NINT 
PLBIItJI « 0.0 
00 240 K"1,NINT 

240 PLBCI.J) » PLBIlfJ) » TEMPBtI*K1*MCK«J> 
250 IFIMMJIE.I) GO TO 290 
C 
C FIND ESTIMATE - LAMBDA AND VARIANCE OF LAMBDA* MODEL 1 

ESTI • 0.0 
00 260 t«l»NINT 
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260 EST I - ESTl • PLII.I)*YI1,11 
C 
C MULTIPLY PL BY V TO TEMP 

00 270 J«t»NINT 
TEMPCltJ) « 0.0 
00 270 K*ltNINT 

270 TEMPI If J) « TEMPIi*J) * PLI1*KI*V1K«JI 
ESTV « 0,0 
DO 280 I« It MINT 

280 ESTV « ESTV • TEMPIUI)«PLI1*1) 
CLAMO(l.MU) « CLAMOIltMU) • ESTl 
VLAMOIltMU) « VLAMOIl.MWI • ESTV 
GO TO 50 

290 CONTINUE 
C 
C MULTIPLY PLB BY Y TO A23* GIVING 
C LAMBDA > LITRANS) * Y FOR MODELS 2« 3* AND 4 

DO 300 I« If 2 
A234II,1) > 0.0 
DO 300 K«1,NINT 

300 A234I1,i; « A234I1.1) + PIBII,KI$V(K,1I 
C 
C MULTIPLY PLB BY V TO TEMPS GIVING VARIANCE OF 
C LAMBDA > LITRANS) • V • L FOR MODELS 2, 3* AND 4 

DO 310 I«l,2 
DO 310 J*l.NINT 
TEMPB(1*J) « 0.0 
DO 310 K«1,N1NT 

310 TEMPBII.J) - TEMPBII.J) * PL&I:,KI#VIK*J) 
C 
C TRANSPOSE L 

DO 320 I«1«NINT 
DO 320 J«l,2 

320 TBI I,J) « PLBIJtll 
C 
C MULTIPLY TEMPA BY TB TO T2 

DO 330 1-1*2 
DO 330 J»l*2 
T2{1*J) • 0.0 
DO 330 K«i*NlNT 

330 T2II*J} « T2IUJ) » TENfBII»K)*TBIK»J) 
IFIMM.EQ.4) GO TO 340 
GO TO 350 

340 ESTl » A234I2*1) • 1.0 
ESTV * EXP1A234II*1))/EST1 
A234I1,1) - ESTV 

_ 1» « EST: 
ESTV « (A234I1,1)**2*T2(1,1)) + I1A234I1»1)*«2/A234t2*ll**2) 

1$T212,2)) - l({2.0*A234lia)*«2)/A23412,U)*T2ll,2)) 
ESTl - fA234ll,l)*T2ll,2)) - l(A234tl*l)*T2l2,2))/A234l2,l)) 
T2I1, 1) > ESTV 
T2fl,2) • EST: 
T2I2,1) « ESTl 

C 
C STORE FINAL RESULTS 
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350 CLANO|MM,MU) - A234lltll 
VLANOfNN.NH} « 12*1,:# 
CLANllNM-ltHHtll - A234I2»!} 
CLAN1(MN-1.NM,2J - T2l2t2l 
CLAN1IIIM>1,NH,3I • T2llt2) 
60 TO 50 

360 CONTINUE 
C 
C COMPUTE STANDARD ERRORS 

DO 370 I"l,4 
00 370 J«lt3 
SaAMOdtJI • SORTIVLAM0I1,JI1 
IF(l.EQ.l) GO TO 370 
SaANKI-l.J) « SQRTICUNllI>l*Jt2)( 

370 CONTINUE 
RETURN 
ENO 

C 
C 
C 

SUBROUTINE STOR I1*NU.FACT»BUFF6} 
C 
C SUBROUTINE TO STORE SURVIVAL AND HAZARD FUNCTION VALUES FOR 
C EACH OF 4 MODELS WITH A GIVEN MODEL WEIGHT IN THE PROPER 
C LOCATION OF A GIVEN BUFFER. 
C 
C THE INPUT PARAMETERS ARE DEFINED AS FOLLOWS. 
C I - DEFINES THE STORAGE ROW IN BUFF6 OR AGE-INTERVAL 
C MW MODEL HEIGHT 
C FACT - VALUES TO BE STORED 
C 
C THE OUTPUT PARAMETER IS DEFINED AS FOLLOWS. 
C BUFF6 - STORAGE BUFFER 
C 

DIMENSION BUFF6ll00«12ltFACTI4t 
C 
C STORE VALUES 

DO 10 MM" 1,4 
J > MW • ((NN-1I*31 
1FI6UFF6( I>JI.NE.0.0) BUFF6II»JI » FACT*MM# 

10 CONTINUE 
RETURN 
END 

C 
C ' • 
c 

SUBROUTINE HAZFCN ICLAN0,CUN1,FLNBUFtLINEI 
C 
C SUBROUTINE TO COMPUTE THE HAZARD FUNCTION FOR EACH 
C AGE-INTERVAL. 
C 

COMMON NINTtTlNTVf100)tTNIDl100)•TWlDllOOt«XNIClOOl•XOIIIOO)t 
HAZDI10OI*VHAZO(100)tBUFF6l100,36) 

C 
DIMENSION HAZBUFt 100,12),CLAMOI4,3),CLAMll3,3eSI,FLNMIFI4,SI, 
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HAZFC4I 
C 

EQU:V«LB#CE (BUFFMltll* HAZSUFIt.lll 
C 
C COMFUTATICM FOR 4 MODELS Alfi HINT A6E>1 tlTERVA&S. 
C 

00 30 WW 1,3 
1R.A6 « 1 
00 20 l>ltNINT 

C 
C MODEL l - EXFONENTIAL 

HAZFfU • CLAMOtl.NUl 
C 
C MOOa 2 - LINEAR 

HâZFf2) - CLAIKH2»MWI • (CUMll 1*MM»I1*TNI0(I>I 
C 
C CHECK RANGE OF HA2AR0 FIUCTION 

IF(HA2FI2I.GE.O.OI GO TO 10 
H«Zfl2l - 0.0 
FLNSUFIZ.HUl « 0.0 
IPfIR.AS.NE.OJ GO TO 10 
IFLAG « 0 
M*"2 
MRITECL1NE*40J MMtMM 

C 
c MODEL 3 - GOMFERTZ 
10 FF . aMOlJ.NMI • *CIAM1(2,#W,1)#T*I0#I#) 

HAZFOI » EXFtFFI 
C 
C HQOa 4 MEI0ULL 

FI « •LC6CCLAH0(4*IHil«CLAMlf3«mt*lll 
F2 « (CLAH1I3,NU,1) - 1.0l«AL0S«TIU0lllt 
HAZFf4l • EXPCFl * F2i 

C 
C STORE HAZARD F4JNCT10N VALUES 

CALL STOR CltMU.HAZF.HAZBUFI 
20 CONTINUE 
30 CONTINUE 

RETURN 
40 FOMATI//** NOOEL •tll»*» HEIGHT * Il * IS INAFMKOMIATE SIMCE** 

. • THE ESTIMATE OF THE HAZARD FUNCTION IS NEGATIVE.*! 
END 

SUBROUTINE S4JRFCN(F.LIHE«FLNBUF»CLAN1«CLAM0I 

SUBROUTINE TO CONFUTE THE SURVIVORSHIP FUNCTION IN EACH AgE-
INTERVAL AND THE FROFORTION SURVIVING EACH AGE-:NTERVAL ITO 
BE USED IN LN-LIKELMOOO CALCULATIONS! FOR EACH OF 4 MODELS 
4ND 3 HEIGHTS 

Tf OUTPUT PARAMETER IS DEFIICO AS FOLLOWS* 
P - PROPORTION SURVIVING 
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DIMENSION 100*12)tStftfC4)•SURBUFC100*12)«MtOBUFC100,12), 
FLNBUFC«*3) •CUNOf 4,3) ,CIAM1(3,3,3) 

C 
COMMON NINT,TINTVC100),TMI0C100),TW10(100)«XNI1100)*X01(100), 

HAZD< 100) , VHAZOf 100) ,BUFF6C 100,36) 
C 

EQUIVILBtCE (BUFF6I1,13),SURBUF(1,1)), fBUFF6tl,29) ,PK0BUFI1,1)) 
C 
C SET FIRST INTERVAL 

DO 10 1*1,12 
SURBUFfl,!) • 1.0 
PROBUFd,!) » 1.0 

10 CONTINUE 
C 
C COMPUTATIONS FOR 4 MODELS AND UMAX AGE-INTERVALS 

Jl • NINT • 1 
DO 60 MW"1,3 
1FLG2 " 0 
IFLG3 " 0 
00 50 I«2,J1 

C 
C COMPUTATIONS FOR THE SURVIVAL FUNCTION USING THE LOWER TIME 
C BOUNDRV OF THE AGE-INTERVAL AND FOR THE PROBABILITV DENSITY 
C FUNCTION USING TMIO, THE INTERVAL MIDPOINT 

DO 40 KK"1,2 
IF(I.EQ.J1.AN0.KK.EQ.2) GO TO 40 
IF(KK.EQ.l) TT - TINTV(I) 
IF(KK.EQ.2I TT « TMIOII) 

C 
C MODEL 1 - EXPONENTIAL 

FF - -CIAM0:1,MW)»TT 
SURFtl) « EXPIFF) 

C 
C MODEL 2 - LINEAR 

FF « -f ICLAN0I2,MWI*TT) • UCLA Mid,MW,1|#(TT*$2) 1/2)) 
SURFC2) > EXPfFFI 
IF(SURFI2).LE.1.0) GO TO 20 
SURFI2) « 0.0 
rf(IFLG2.NE.0) 60 TO 20 
1FL62 • 1 
FLNBUFI2,NW) « 0.0 
MM*2 
MRtTEaiNE,100) MM,MM 

C 
C MODB. 3 - GONPERTZ 
20 FFl • -CEXPICLAH0I3,MWI))/CLANIC2,NW,1I 

FF2 « EXPICLAMll2,NN,1I«TTI - 1 
SURFIS) - EXPIFP1*FF2) 
:FISURFI39.1E.1.0) GO TO 30 
SURFI3I « 0.0 
1FIIFLG3.NE.0) GO TO 30 
1FL63 » 1 
FLNBUFI3,MU) • 0.0 
MM*3 
WRITEIL ME, 100) 

\ 
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C 
c MODEL 4 MEIBULL 
30 FF « -(aANOI4.MW|*fTT*«CLAMll3«MHtllll 

SURFIS! • EXPtFFI 
C 
C STORE IN SURBUF 

IF(KK.EQ.i; CALL STOR CItMWtSURF.SURBUF) 
1FIKK.EQ.2I CALL STOR (I.MW,SURF,PRD8*fl 

40 CONTINUE 
50 CONTINUE 
60 CONTINUE 
C 
C COMPUTE P - THE PROPORTION SURVIVING 

00 80 J"l,12 
00 70 I*1.NINT 
PlIvJi • SURBUF*I+1,J#/SURBUF(I,J) 
TEST « 1.0 - U.0/{2.C*XN1II1I} 
IFIPfl»Jl.GT.TEST) P(I,J# • TEST 
IFIPCItJl.GT.O.O) GO TO 70 

C 
C ERROR CONDITION - PROPORTION SURVIVING LESS THAN OR EQUAL 0 

SURBUFf l-»ltJI * 0.0 
MM « ((J-i;/3) • 1 
MM • J - UMM-1)*31 
FLNBUF(MM,MWI « 0.0 
URITEILlNEt90) MM,MM 

70 CONTINUE 
80 CONTINUE 

RETURN 
C 
C FORMAT STATEMENTS 
90 FORMAT!//** MODEL ,II,«, HEIGHT ,11,«, !S INAPPROPRIATE SINCE «, 

. 'THE COMPUTED CUMULATIVE PROPORTION SURVIVING IS NEGATIVE OR 

. •ZERO.«J 
100 FORMAT*//,* MODEL ,11,', WEIGHT *,Il,', IS INAPPROPRIATE SINCE*, 

. * THE ESTIMATE OF THE SURVIVORSHIP FUNCTION IS GREATER THAN*, 
. *1.0.* I 

END 
C 
C • ' 
c 

SUBROUTINE LNLIK (P,FLNBUF1 
C 
C SUBROUTINE TO COMPUTE THE LN>LIKELIH0C0 FOR EACH MODEL, 
C • ACCORDING TO THE FOLLOWING FORMULA. 
C 
C N 
C FLNBUFU,KI * SUM (XOtCII«ALOGfl.O - PIUJKII • 
C I«1 
C 
C N 
C SUM (IXNICII - XOIIIII«ALOGIPII,IJ>l 
C I-I 
C 
C WHERE J«l*...,4t K«&,...,3; AND JMI8J-i»*3l«K 
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C 
C THE INPUT PARAMETER IS DEFINED AS FOLLOWS^ 
C P ARRAY CONTAINING THE PROPORTION SURVIVING IN 
C EACH AGE-INTERVAL COMPUTED FOR EACH OF THE 4 
C MODELS 
C 

DIMENSION Pll00«l2),FLNBUFI4t3) 
C 

COMMON NINT t T IN TVI 100 ) r TM IDC lOOJ t THI DC 100) ,XN: ( 10011 XOU 100 ) » 
HAZDl1001tVHAZOI 1001«BUFFôltOOtB*! 

C 
DO 20 J«1.12 
SUMl « 0.0 
SUN2 « 0.0 
MM • ICJ-l)/3) • I 
MW " J - l|MM-l)*3; 
IFIFLNBUF(MM,NU).EQ.O.O) GO TO 20 
DO 10 I«1*NINT 
D • ALOGd.O - Pll.Jl) $ œill) 
SUMl - SUMl • D 
S » ALOGCPf If J)I«CXNI<I) - XOKlll 
SUM2 « SUM2 «• S 

10 CONTINUE 
FLNBUFIMMtMUl » SUMl + SUM2 

20 CONTINUE 
RETURN 
END 

C 
C — • •• . • 
C 

FUNCTION CHISQIXSQflDF) 
C 
C FUNCTION ROUTINE TO COMPUTE THE CHISQ 
C 

PI • 3.1415927 
X « SORTIXSOI 
S2PI - S0RTf2.0 * PII 
IFfXSQ.LT.-l80..0R.XSQ.6T.IT4) XSQ*0. 
Z > C1.0/S2PI) * EXM-XSQ/2.0X 

C 
C TEST IDF - EVEN U? 300 

ITRV » IOF/2 
IFIIITRY * 21 - IDFI 50*10»50 

C 
C CASE 1 - lOF EVEN 
10 SUM « 0.0 

LOOP * IIOF -21/2 
IFILOOP.EQ.OI GO TO 40 -
00 30 L«ltLOOP 
DIV « 1.0 
DO 20 I'ltL 
FI « 1 
DIV - DIV $ «2.0 # Fl> 

20 CONTINUE 
EX « 2 * L 
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SUN • SUN • ex «• EX)/D1V 
30 CONTINUE 
40 CHISQ « S2PI * 7 • Ct.O • SUN! 

RETURN 
C 
C CASE 2 - 10F CDD 
SO Al > .43618 

A2 - -.12017 
A3 » .93730 
PP « .33267 
T « 1.0/1 i.o * spp • xn 
QX • z « ((Al • T) • (A2 $ (T «• 21) • (A3 • (T ** 3))) 
SUN « 0.0 
LOOP » (:0F - 11/2 
IF(IOOP.EQ.O) GO TO 80 
00 70 L«ltLOOP 
OIV « 1.0 
00 60 !«l,l 
FI « I 
DIV » OIV * ((2.0 • FI) - 1.0) 

60 CONTIIWE 
EX « (2 * L) - 1 
SUN « SUN • (X «« EXI/DIV 

70 CONTINUE 
80 CHISQ « (2.0 * OX) • (2.0 « Z * SUN) 

RETURN 
END 

C 
C - • • • ' 
C 

SUBROUTINE LNLIKS (XOI»XNI»SURCUN«NINTfFLNLSN) 
C 
C SUBROUTINE TO COMPUTE LN-LIKELIHOOO F(* SAMPLE DATA. 
C 

DIMENSION X0I(l00ltXNI(100)»SURCUN(100) 
• C 

SUMl « 0.0 
SUM2 « 0.0 
00 10 l'ItNlNT 
P« SURCUM(I*1I/SURCUM(1) 
S(M1 « SUMl * AL0C(1.<HP) * XDIIII 
SUM2 « SUMl •» ALOG(P) • i»lt(II-XOIID) 

10 CONTINUE 
FLNLSM m SUMl • SUN2 
RETURN 
ENO 
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APPENDIX C: EXAMPLE OF OBSERVED LIFE TABLE 

AKD WEIŒTED LEAST SQUARES ESTIMATE OF PARAMETERS 
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V- I hEIBULL — lAMBDA-0 - 0.08 LAH6DA-1 • 1.9 

CONDITIONAL PROPORTION RETIRED 

LIFE TABLE DATA 

INT HID INT NO. NO. PROPN PROPN CUM PROB HAZD ST ER ST ER ST ER MED ST ER 
START POINT WIDTH ENTER RETIRE RETIRE SURV PROPN DENS RATE CUM PROB HAZD LIFE LIFE 

SURV SURV DENS RATE EXPECT EXPECT 
0.0 0.25 0.50 1000. 31. 0.0310 0.9690 1.0000 0.0620 0.0620 0.0 0.0110 0.0110 4.0636 0.1437 
0.9 1.00 I.00 969. 111. 0.1146 0.8854 0.9690 0.1110 0.1146 0.0055 0.0099 0.0102 3.7045 0.1415 
l.S 2.00 1.00 858. 160. 0.1865 0.8135 0.8580 0.1600 0.1865 0.0110 0.0116 0.0133 3.2277 0.1450 
2.5 3.00 1.00 698. 136. 0.1948 0.8052 0.6980 0.1360 0.1948 0.0145 0.0108 0.0150 3.0250 0.1651 
3.9 4.00 1.00 562. 110. 0.1957 0.8043 0.5620 0.1100 0.1957 0.0157 0.0099 0.0167 2.8750 0.1482 
4.9 5.00 1*00 452. 101. 0.2235 0.7765 0.4520 0.1010 0.2235 0.0157 0.0095 0.0196 2.6164 0.1496 
5.9 6<,ao 1.00 351. 80« 0.2279 0.7721 0.3510 0.0800 0.2279 0.0151 0.0086 0.0224 2.4327 0.1801 
6.9 7,00 %«00 271. 73. 0.2694 0.7306 0.2710 0.0730 0.2694 0.0141 0.0082 0.0269 2.2386 0.1671 
7.9 8.00 uoo 198. 52. 0.2626 0.7374 0.1980 0.0520 0.2626 0.0126 0.0070 0.0313 2.1000 0.2345 
8.9 9.00 1.00 146. 44. 0.3014 0.6986 0.1460 0.0440 0.3014 0.0112 0.0065 0.0380 1.9667 0.2014 
9.9 10,00 1.00 102. 30. 0.2941 0.7059 0.1020 0.0300 0.2941 0.0096 0.0054 0.0451 1.7778 0.1870 

10.5 11.00 1.00 72. 27. 0.3750 0.6250 0.0720 0.0270 0.3750 0.0082 0.0051 0.0571 1.5000 0.2357 
11.9 12.00 1.00 45. 18. 0.4000 0.6000 0.0450 0.0160 0.4000 0.0066 0.0042 0.0730 1.4091 0.3049 
12.9 13.00 1.00 27. 11. .0.4074 0.5926 0.0270 0.0110 0.4074 0.0051 0.0033 0.0946 1.6250 0.6495 
13.9 14.00 1.00 16. 4. 0.2500 0.7500 0.0160 0.0040 0.2500 0.0040 0.0020 0.1083 1.5714 0.2897 
14.9 19.00 1.00 12. 7. 0.5833 0.4167 0.0120 0.0070 0.5833 0.0034 0.0026 0.1423 0.8571 0.2474 
19.9 16.90 2.00 5. 2. 0.4000 Ô.6000 0.0050 0.0010 0.2000 0.0022 0.0007 0.1095 2.2500 0.9590 
17.9 18.00 1.00 3. 2. 0.6667 0.3333 0.0030 0.0020 0.6667 0.0017 0.0014 0.2722 0.7500 0.4330 
18.9 ** »* 1. 1. 0.5000 0.5000 0.0010 ** $* 0.0010 •• ** 

* INDICATES NO MEDIAN LIFE EXPECTANCY CAN BE CALCULATED FOR THIS ENTRY. 
** CALCULATIONS INVOLVING INTERVAL WIDTH FOR LAST INTERVAL HAVE NO MEANING. 

LN-HKELIHOOD FOR SAMPLE DATA - -3217.07 
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ESTIMATES OF SURVIVORSHIP FUNCTION 

MODEL 1 MODEL 2 MODEL 3 MODEL 4 
INTERVAL START WT 1 WT 2 WT 3 WT 1 WT 2 WT 3 WT 1 WT 2 WT 3 WT 1 WT 2 WT 3 

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.90 0.8651 0.9222 0.9099 0.9468 0.9518 0.9458 0.9369 0.9349 0.9448 0.9708 0.9691 0.9699 
1.50 0.6475 0.7843 0.7534 0.8351 0. 8466 0.8320 0.8159 0.8093 0.8342 0.8658 0.8608 0.8626 
2.50 0.4847 0.6670 0.6238 0. 7209 0.7349 0.7158 0.7023 0.6907 0.7249 0.7404 0.7333 0. 7369 
3.50 0.3628 0.5673 0.5165 0.6089 0. 6225 0.6021 0.9971 0.5809 0.6185 0.6140 0.6062 0.6104 
4.50 0.2719 0.4824 0.4276 0.5034 0.9146 0.4953 0.5008 0.4797 0.9170 0.4964 0.4688 0.4937 
5.50 0.2032 0.4103 0.3941 0.4072 0.4152 0.3985 0.4139 0.3891 0.4223 0.3927 0.3899 0.3909 
6.50 0.1521 0.3489 0.2932 0.3224 0.3269 0.3135 0.3368 0.3092 0.3361 0.3046 0.2989 0.3038 
7.50 0.1139 0.2968 0.2427 0.2498 0.2512 0.2412 0,2693 0.2403 0.2596 0.2321 0.3279 0.2322 
8.90 0.0852 0.2524 0.2010 0.1894 0.1884 0.1814 0.2114 0.1822 0.1940 0.1739 0.1709 0.1747 
9.50 0.0638 0.2146 0.1664 0.1405 0.1378 0.1335 0.1626 0.1345 0.1396 0.1284 0.1299 0.1299 

10.50 0.0477 0.1825 0.1378 0.1020 0.0984 0.0960 0.1224 0.0964 0.0963 0.0934 0.0917 0.0947 
11.50 0.0357 0.1552 0.1141 0.0725 0.0686 0.0675 0.0900 0.0669 0.0633 0.0671 0.0659 0.0684 
12.50 0.0267 0.1320 0.0944 0.0504 0.0467 0.0465 0.0645 0.0448 0.0394 0.0475 0.0468 0.0488 
13.50 0.0200 0.1123 0.0782 0.0343 0.0310 0.0313 0.0449 0.0288 0.0231 0.0332 0.0328 0.0344 
14.50 0.0150 0.0955 0.0647 0.0229 0.0201 0.0206 0.0304 0.0178 0.0126 0.0230 0.0228 0.0240 
15.50 0.0112 0.0812 0.0536 0.0149 0.0127 0.0132 0.0199 0.0105 0.0064 0.0157 0.0156 0.0169 
17.50 0.0063 0.0587 0.0368 0.0059 0.0047 0.0051 0.0077 0.0031 0.0012 0.0071 0.0071 0.0076 
18.50 1.0000 

ESTIMATES OF PROBABILITY DENSITY FUNCTION 

MODEL 1 MODEL 2 MODEL 3 MODEL 4 
INTERVAL START WT 1 WT 2 WT 3 WT 1 WT 2 WT 3 WT 1 WT 2 WT 3 WT 1 WT 2 WT 3 

0.0 0.2897 0.1620 0.1888 0.1093 0.098n 0.1114 0.1303 0.1346 0.1136 0.0629 0.0667 0.0697 
0.50 0.2168 0.1378 0.1563 0.1119 0.105(1 0.1140 0.1211 0.1257 0.1106 0.1068 0.1101 0.1087 
1.50 0.1623 0.1172 0.1294 0.1145 0.112(1 0.1169 0.1136 0.1186 0.1095 0.1261 0.1282 0.1268 
2.50 0.1215 0.0996 0.1072 0.1121 0.112(> 0.1138 0.1053 0.1103 0.1064 0.1268 0.1275 0.1269 
3.50 0.0909 0.0847 0.0887 0.1057 0.1080 0.1069 0.0963 0.1009 0.1015 0.1178 0.1175 0.1169 
4.50 0.0681 0.0721 0.0735 0.0962 0.0995 0.0969 0.0869 0.0906 0.0948 0.1038 0.1030 0.1028 
5.50 0.0509 0.0613 0.0608 0.0849 0.0884 0.0850 0.0772 0.0799 0.0863 0.0881 0.0870 0.0871 
6.50 0.0381 0.0521 0.0504 0.0726 0.0757 0.0723 0.0674 0.0689 0.0769 0.0725 0.0713 0.0716 
7.50 0.0285 0.0443 0.0417 0. 0604 0.0628 0.0597 0.0579 0.0581 0.0696 0.0981 0.0570 0.0974 
8.50 0.0214 0.0377 0.0345 0.0488 0.0509 0.0479 0.0487 0.0477 0.0544 0.0455 0.0449 0.0491 
9.50 0.0160 0.0321 0.0286 0.0384 0. 0393 0.0374 0.0402 0.0381 0.0433 0.0349 0.0341 0.0347 

10.50 0.0120 0.0273 0.0237 0.0295 0.0298 0.0284 0.0324 0.0295 0.0329 0.0263 0.0297 0.0263 
11.50 0.0090 0.0232 0.0196 0. 0220 0.0219 0.0210 0.0255 0.0221 0.0238 0.0199 0.0191 0.0199 
12.50 0.0067 0.0197 0.0162 0.0161 0.0156 0.0151 0.0195 0.0159 0.0163 0.0142 0.0139 0.0143 
13.50 0.0050 0.0168 0.0134 0.0114 0.0109 0.0106 0.0145 0.0110 0.0104 0.01C2 0.0100 0.0104 
14.50 0.003.1 0.0143 0.0111 0.0079 0.0073 0.0073 0.0105 0.0073 0.0062 0.0072 0.0071 0.0074 
15.50 0.0024 0.0112 0.0084 0.0044 0.0039 0.0040 0.0060 0.0036 0.0024 0.0042 0.0042 0.0044 
17.50 0.0016 0.0088 0.0063 0.0023 0.0019 0.0020 0.0032 0.0015 0.0008 0.0024 0.0024 0.0029 
18.50 *# ** ** •* ** *• »* ** # #  ** 
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V- 1 WE I BULL — LAHBOA-0 • 0.08 LANBOA-1 • 1,5 

ACTUARIAL ESTIMATE 

LIFF TABLE DATA 

INT MID INT NO. NO. PROPN PROPN CUM PROB HAZD ST ER ST ER ST ER MED ST ER 
START POINT WIDTH ENTER RETIRE RETIRE SURV PROPN DENS RATE CUM PROB HAZO LIFE LIFE 

SURV SURV DENS RATE EXPECT EXPECT 
0.0 0.25 0.50 1000. 31. 0.0310 0.9690 1.0000 0.0620 0.0630 0.0 0.0110 0.0113 4.0636 0.1437 
0.5 1.00 1.00 969. 111. 0.1146 0.8854 0.9690 0.1110 0.1215 0.0055 0.0099 0.0115 3.7045 0.1415 
1.5 2.00 1.00 658. 160. 0.1865 0.8135 0.8580 0.1600 0.2057 0.0110 0.0116 0.0162 3.2277 0.1450 
2.5 3.00 1.00 698. 136. 0.1948 0.8052 0.6980 0.1360 0.2159 0.0145 0.0108 0.0184 3.0250 0.1651 
3.5 4.00 1.00 562. 110. 0.1957 0.8043 0.5620 0.1100 0.2170 0.0157 0.0099 0.0206 2.8750 0.1482 
4.5 5.00 1.00 452. 101. 0.2235 0.7765 0.4520 0.1010 0.2516 0.0157 0.0095 0.0248 2.6164 0.1456 
5.9 6.00 I.00 351. 80. 0.2279 0.7721 0.3510 0.0800 0.2572 0.0151 0.0086 0.0285 2.4327 0.1801 
6.5 7.00 1.00 271. 73. 0.2694 0.7306 0.2710 0.0730 0.3113 0.0141 0.0082 0.0360 2.2386 0.1871 
7.5 8.00 1.00 198. 52. 0.2626 0.7374 0.1980 0.0520 0.3023 0.0126 0.0070 0.0414 2.1000 0.2345 
8.5 9.00 1.00 146. 44. 0.3014 0.6986 0.1460 0.0440 0.3548 0.0112 0.0069 0.0526 1.91,6? 0.2014 
9.5 10.00 1.00 102. 30. 0.2941 0. 7059 0.1020 0.0300 0.3448 0.0096 0.0054 0.0620 1.7778 0.1870 

10.5 11.00 1.00 72. 27. 0.3750 0.6250 0.0720 0.0270 0.4615 0.0082 0.0051 0.0864 1.5000 0.2357 
11.5 12.00 1.00 45. 16. 0.4000 0.6000 0.0450 0.0180 0.5000 0.0066 0.0042 0.1141 1.4091 0.3049 
12.5 13.00 1.00 27. 11. 0.4074 0.5926 0.0270 0.0110 0.5116 0.0051 0.0033 0.1491 1.6250 0.6495 
13.5 14.00 1.00 16. 4. 0.2500 0. 7500 0.0160 0.0040 0.2857 0.0040 0.0020 0.1414 1.5714 0.2857 
14.5 15.00 1.00 12. 7. 0.5833 0.4167 0.0120 0.0070 0.8235 0.0034 0.0026 0.2837 0.8571 0.2474 
15.5 16.50 2.00 9. 2. 0.4000 0.6000 0.0050 0.0010 0.2500 0.0022 0.0007 0.1712 2.2500 0.5590 
17.5 18.00 1.00 3. 2. 0.6667 0.3333 0.0030 0.0020 1.0000 0.0017 0.0014 0.6124 0.7500 0.4330 
16.5 #* 1. 1. C.5000 0.5000 0.0010 ** «• 0.0010 • • • • 

* INDICATES NO MEDIAN LIFE EXPECTANCY CAN BE CALCULATED FOP THIS ENTRY. 
** CALCULATIONS INVOLVING INTERVAL WIDTH FOR LAST INTERVAL HAVE NO MEANING. 

LN-LIKELIHOOO FOR SAMPLE DATA - -3217.07 
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V- 1 MEIBULL — LAHBOA-0 > 0.06 LAHBOA-1 • l.S 

MAXIMUM LIKELIHOOD ESTIMATE 

LIFE TABLE DATA 

INT MID INT NO. NO. PROPN PROPN CUM PROB HA2D ST ER ST ER ST ER NED ST ER 
START POINT WIDTH ENTER RETIRE RETIRE SUAV PROPN DENS RATE CUM PROB HA20 LIFE LIFE 

SURV SURV DENS RATE EXPECT EXPECT 
0.0 0.29 0.50 1000. 31. 0. 0310 0.9690 1.0000 0.0620 0.0630 0.0 0.0110 0.011) 4.06)6 0.1437 
0.5 1.00 1.00 969. 111. 0.1146 0.8854 0.9690 0.1110 0.1217 0.0055 0.0099 0.0116 3.7045 0.1415 
1.9 2.00 1.00 858. 160. 0.1865 0.8135 0.8580 0.1600 0.2064 0.0110 0.0116 0.0163 3.2277 0.1450 
2.5 3.00 1.00 690. 136. 0.1948 0.8052 0.6980 0.1360 0.2167 0.0145 0.0108 0.0186 3.0250 0.1651 
3.9 4.00 1.00 562. 110. 0.1957 0.8043 0.5620 0.1100 0.2178 0.0157 0.0099 0.0208 2.8750 0.1482 
4.9 5.00 1.00 452. 101. 0.2235 0.7765 0.4520 0.1010 0.2529 0.0157 0.0095 0.0252 2.6164 Ù.1456 
9.9 6.00 1.00 351. 80. 0.2279 0.7721 0.)510 0.0800 0.2587 0.0151 0.0086 0.0290 2.4327 0^1801 
6.9 7.00 1.00 271. 73. 0.2694 0.7306 0.2710 0.0730 0.3139 0.0141 0.0082 0.0369 2.2386 0.1871 
7.9 8»00 1.00 190. 52. 0.2626 0.7374 0.1980 0.0520 0.3147 0.0126 0.0070 0.0424 2.1000 0.2345 
8.9 9.00 1.00 146. 44. 0.3014 0.6986 0.146C 0.0440 0.3586 0.0112 0.0065 0.0544 1.9667 0.2014 
9.9 10.00 1.00 102. 30. 0.2941 0.7059 0.1020 0.0300 0.3483 0.0096 0.0054 0.0639 1.7778 0.1870 

10.9 11.00 1.00 72. 27. 0.3750 0.6250 0.0720 0.0270 0.4700 0.0082 0.0051 0.0913 1.5000 0.2357 
It:.5 12.00 1.00 45. 18. 0.4000 0.6000 0.0450 0.0180 0.5108 0.0066 0.0042 0.1217 1.4091 0.3049 
12.3 13.00 1.00 27. 11. 0.4074 0.9926 0.0270 0.0110 0.52)2 0.0051 0.00)3 0.1996 1.6250 0.6495 
13.5 14.00 1.00 16. 4. 0.2900 0.7500 0.0160 0.0040 0.2877 0.0040 0.0020 0.1443 1.5714 0.2857 
14.9 15.00 1.00 12. 7. 0.5833 0.4167 0.0120 0.0070 0.8755 0.0034 0.0026 0.3416 0.8571 0.2474 
19.5 16.50 2.00 5. 2. 0.4000 0.6000 0.0050 O.OOlU 0.2554 0.0022 0.0007 0.1826 2.2500 0.5590 
17.9 18.00 1.00 3. 2. 0.6667 0.33») 0.0030 0.0020 1.0986 0.0017 0.0014 0.8169 0.7900 0.4)30 
18.9 1. 1. 0.5000 0.5000 0.0010 ## $» 0.0010 • • #6 * * 

* INDICATES NO MEDIAN LIFE EXPECTANCY CAN BE CALCULATED FOR THIS ENTRY. 
** CALCULATIONS INVOLVING INTERVAL WIDTH FOR LAST INTERVAL HAVE NO MEANING» 

LN-LIKELIHOOD FOR SAMPLE DATA « -3217.07 
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HOOEL 1 - EXPONENTIAL 
MODEL 2 - LINEAR HAZARD 
MODEL 3 - GONPERTZ 
MODEL 4 « WEI BULL 

UEIGHTini - 1. 
WEICHT2(1) • 1. / V 
MEIGHT3tI) - NI II * Hill 

MODEL I 
WT 1 UT 2 NT 3 

LAMDOA-0 0.3713 0.1630 0.2136 
VARILAMBDA-Ol 0.0028 0.0000 0.0000 
Sr.ERRORILAH-Oi 0.0527 0.0059 0.0066 
LAMBDA-1 
VARILAMBDA-1) 
ST.ERRORILAM-ll 
COVILAM-OtLAM-U 
LN-LIKELIHOOD -2786.23-2613.31-2569.46 

MODEL 1 
INTERVAL START HT 1 WT 2 NT 3 

0.0 0.37 3 0.1630 0.2136 
0.90 0.37 3 0.1630 0.2136 
1.90 0.37 3 0.1630 0.2136 
2.50 0.37 3 0.1630 0.2136 
3.90 0.37 3 0.1630 0.2136 
4.90 0.37 3 0.1630 0.2136 
5.50 0.37 3 0.1630 0.2136 
6.50 0.37 3 0.1630 0.2136 
7.90 0.37 3 0.1630 0.2136 
8.50 0.37 3 0.1630 0.2136 
9.50 0.3 7 3 0.1630 0.2136 

10.50 0.37 3 0.1630 0.2136 
11.50 0.37 3 0.1630 0.2136 
12.50 0.37 3 0.1630 0.2136 
13.50 0.37 3 0.1630 0.2136 
14.50 0.37 3 0.1630 0.2136 
15.50 0.37 3 0.1630 0.2136 
17.90 0.37 3 0.1630 0.2136 
18.90 * »# $* 

ESTIMATES OF PARAMETERS 

MODEL 2 MODEL ; 1 MODEL 4 
WT 1 WT 2 WT 3 WT 1 WT 2 WT 3 WT 1 WT 2 WT 3 

0.13651 0.0875 0.1051 -2.0333 -1.9986 -2.1576 0.0799 0.0870 0.0859 
0.0C79 0.0001 0.0001 0.0126 0.0031 0.0040 0.0001 0.0000 0.0001 
0.0889 0. 0001 0.0102 0.1121 0.0557 0.0639 0.0091 0.0068 0.0076 
0.0356 0.0320 0.0292 0.0983 0.1110 0.1363 1.9160 1.4654 1.4664 
0.0003 0.0000 0.0000 0.0004 0.0001 0.0001 0.0049 0.0014 0.0016 
0.0162 0.0024 0.0029 0.0198 0.0096 0.0110 0.0672 0.0369 0.0427 

-0.0021 -0.0004 —0.0006 -0.0006 -0.0002 -0.0003 
2510.34-2503.Q3-2503.68 -2916.92-2513.13-2916.06 -2497.30-2495.70-2495.73 

ESTIMATES OF HAZARD FUNCTION 

MODEL 2 MODEL 3 MODEL 4 
WT 1 WT 2 WT 3 WT 1 WT 2 WT 3 WT 1 WT 2 WT 3 

0.0740 0.0999 0.1174 0 1342 0.13 3 0.1196 0.09 2 0.0669 0.0660 
0.1007 0.1199 0.1343 0 1444 0.19 4 0.132» 0.12 1 0.1279 0.1260 
0.1363 0.1919 0.1636 0 1594 0.16 2 0.1916 0.17 2 0.1760 0.1741 
0.171« 0.1039 0.1928 0 1758 0.16 1 0.1740 0.21 9 0.2126 0.2103 
0.2076 0.2199 0.2221 0 1940 0.21 3 0.1994 0.24 6 0.2431 0.2409 
0.2432 0.2475 0.2913 0 2140 0.23 1 0.2289 0.27 9 0.269V 0.2669 
0.2788 0.2795 0.2809 0 2362 0.26 8 0.2619 0.30 3 0.2939 0.2906 
0.3144 0.3114 0.3098 0 2606 0.29 7 0.3002 0.3309 0.3194 0.3122 
0.3900 0.3434 0.3390 0 2875 0.12 3 0.3440 0.39 1 0.3356 0.3323 
0.3897 0.3794 0.3683 0 3172 0.36 0 0.3942 0.37 3 0.3949 0.3910 
0.4213 0.4074 0.3979 0 3500 0.41 2 0.4916 0.39 3 0.3723 0.3687 
0.4569 0.4394 0.4268 0 3861 0.49 4 0.9176 0.41 4 0.3892 0.3899 
0.4929 0.4714 0.4960 0 4260 0.91 3 0.9934 0.43 9 0.4093 0.4014 
0.9282 0.5034 0.4892 0 4701 0.57 6 0.6801 0.49 9 0.4207 0.4167 
0.9638 0.5354 0.9149 0 5186 0.6409 0.7794 0.47 7 0.4394 0.4314 
0.9994 0.5674 0.9437 0 5722 0.71 1 0.8932 0.48 8 0.4496 0.4499 
0.6929 0.6153 0.5876 0 6632 0.84 9 1.0996 0.91 9 0.4700 0.4657 
0.7063 0.6633 0.6315 0 7686 0.99 1 1.3444 0.93 1 0.4899 0.4890 

*# • « • • »* * # #  • • * •* 
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