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INTRODUCTION

The motivation for this study stems from an interest ia the quantita-
tive methods used by depreciation engineers to estimate the probable
service life of industrial property. While it is now generally understood
that an accurate estimate of service life is indispensible to the applica-
tion of most methods of computing depreciation, this was not always the
case. A variety of schemes were once used to charge the cost of depre-
ciable plant to expense without regard to the service life of the
property. Under the retirement method, for example, the cost of a plant
asset was first charged to a plant account and then charged to expense at
the time of retirement. An alternative treatment that supposedly kept the
property in 1002 operating condition was to charge a plant account with
the cost of the original plant asset, but replacements were charged to
expense. Since depreciation methods such as these did not aim to distrib-
ute the cost of an asset over its productive life, there was little need
for making engineering estimates of the probable service life.

Shortly after the turn of the twentieth century these earlier methods
were gradually abandoned and full depreciation accounting became the
accepted method of charging the cost of depreciable plant to expense. The
usual accounting practice today in industries using long-lived assets is
to allocate a portion of the investment in depreciable plant to each
accounting period during the life of the plant. Thus, the cost of the
depreciable property that is charged to a fixed asset account is viewed as
a prepaid expense to be amortized over the accounting periods related to

its use.



The Interstate Commerce Commission (ICC) played an important role in
promoting acceptance of the allocation of cost concept and the age-life
relationship in depreciation accounting. As early as 1907, full deprecia-
tion accounting was prescribed by the ICC for steam railroads. In 1910,
the jurisdiction of the ICC was broadened to include teiephone, telegraph.
and cable companies that were engaged in interstate message communications.
Shortly thereafter, accountants of the ICC began work on a Uniform System
of Accounts for Telephone Companies that included definitions and rules
for depreciation accounting. It was not until January 1, 1913, however,
that the work was completed and the accounting system became mandatory.
According to the Depreciation Subcommittee of the National Association of
Regulatory Utility Commissioners (52, p. 10), the rules with respect to
depreciation included the following statement:

" . . depreciation expense should be designed to recover

the cost of plant over its estimated life in the case of

individual units, and over the estimated average service life

in the case of group properties.”

It is reported by Nash (49, pp. 4-5) that a more comprehensive accounting
system was adopted by the ICC in 1914, wherein the program with respect to
depreciation was defined as follows:

"We therefore find that annual depreciation charges shall

be computed at such percentage rates of the ledger value of

the unit of property in question that the service value, as

hereinbefore defined, may be distributed under the straight-

line method in equal annual charges to operating expenses

during the estimated service life of the unit. Annual charges

so computed shall be reduced to a monthly basis by dividing by

iz.v
Thus, the introduction in 1913 of the Uniform System of Accountants
required by the ICC under the Mann-Elkins Act of 1910, firmly astablished

the propriety of depreciation accounting which, in turn, created a general



need for the development of sound methods of estimating the probable
service life of industrial property.

To the uninitiated it might seem that an estimate of probable service
life could be obtained by merely calculating the average age of plant
retired in recent years. But with a little reflection it becomes apparent
that the problem is not this simple, since the average age of plant
retired is typically lower than the true average service life. For
example, if we calculate the average age at death of the male population
born in 1920 who have already passed on, we will surely understate the
average life of all males born in 1920, since it is reasonable to assume
that a majority of them are still alive.

With the exception of short lived property such as motor vehicles,
office furniture, and communication equipment, most classes of industrial
property have not been in service long enough to provide a history of
- completed generations. Consequently, it is mnecessary to devise methods of
estimating probable service life from a series of vintages that are only
partially retired. The problem is further complicated by the fact that
many firms do not maintain plant accounting records that reveal the age
distribution of plant still in service. 1In this case, estimates of the
probable service life must be derived without any knowledge of the age of
Plant retirements at the time of their retirement.

While most of the common methods of computing depreciation require an
estimate of service life, some methods also require an estimate of life
expectancy which is the period of time extending from an observation age
to the forecasted date of retirement. This information, which is also

needed for depreciation reserve studies, can be obtained from a



mathematical formulation of the life characteristics of the property under
review. The mathematical expressions used to describe these character-
istics are known as "survival functions" which are derived by the depre-
ciation engineer from the application of various life analysis techniques.1
The purpose of the present study is to investigate the possibility of
improving the estimation procedure currently employed in the application
of a sub-set of the class of life analysis techniques known as the
actuarial methods. This investigation will focus on the amnual rate (or
retirement rate) method of life analysis and the statistic used to

estimate the hazard rate for each age-interval.

1The term "life analysis" has traditionally been used by depreciation
engineers to describe the application of certain analytical procedures to
plant accounting records containing the life history of various classes of
physical property. The end result of such an analysis is a mathematical
description of the age distribution of plant retirements measured in units
of realized service. The term "life estimation" is also used by the
depreciation engineer when attention is given to predicting the expected
remaining service life of property units still exposed to the forces of
retirement. The two terms are not synonymous; life analysis is concerned
with history and life estimation is concerned with the future. The present
study is limited to a consideration of life amalysis.



RELATED CONCEPTS

Once the need for service life estimates had been established, it was
soon recognized that such estimates could be cbtained by applying the
actuarial procedures developed for investigating human mortality to the
mortality experience of physical property. But these procedures (used
extensively in life insurance work) can only be applied to plant accounting
records that reveal the age of a plant asset at the time of its retirement.
In other words, each property unit must be identifiable by date of instal-
lation and age at retirement. This limitation encouraged the development
of a class of life analysis techniques known as the "semi-actuarial"

methods.

Semi-actuarial Methods of Life Analysis
In 1922, Cyrus G. Hill (34) proposed a method for analyzing the life
. experience of various classes of telephone plant when ". . . the age of
the plant retired at any time cannot be told from a casual inspection of
the books." In other words, the available property records reveal the
annual gross additions and annual plant or account balances (i.e., plant
in service) with no indication of the age of plant retirements.

The Hill method is a trial and error procedure that attempts to
duplicate the most recent plant balance of a plant account by distributing
the annual gross plant additions over time according to an assumed life
table or survivorship function. The constructed or computed plant balance
is simply the accumulation of each gioss Plant additionnmultiplied by the
indicated proportion surviving (from the assumed life table) at its

attained age. If the mortality experience of the property had, in fact,



followed the life characteristics described by the assumed survivorship
function then the computed plant balance would be equal in magnitude to
the amount of plant actually in service. On the other hand, if the
selected survivorship function does not generate adequate retirements
(i.e., the computed balance is greater (less) than the actual balance),
then the procedure would be repeated using a shorter (longer) average
service life with a survivorship function of the same dispersion.

An obvious drawback in Hill's method is that every survivorship
function has an average service life that will produce a single computed
balance equal in magnitude to the corresponding actual plant balance.
Furthermore, since the derived average service life is a function of the
selected dispersion, an incorrect dispersion will introduce an error in
the estimated average service life.

In 1943, a variation of the Hill method was presented by the National
.Association of Railroad and Utilities Commissioners (50) in a report of
the committee on depreciation. While the principle of the suggested
procedure (described as the "Indicated Survivors Method") is identical to
Hill's, the NARUC method attempts to duplicate a series of plant balances
over a few prior years instead of limiting the analysis to the most recent
plant balance in the account. The advantage gained from the use of
multiple balances is that it may provide a clue to the probable type of
dispersion. The claimed advantage is questionable, however, since the
selection criterion is simply a visual inspection of how well the series
of computed balances conforms to the series of actual balances.

In 1947, Alex E. Bauhan (5) presented a paper at the American Gas

Association-Edison Electric Institute National Accounting Conference that



described a method for analyzing mass property accounts (i.e., aged
retirements are not available) that would provide an estimate of both
dispersion—-type and average service life. The Bauhan procedure (known as
the "Simulated Plant Balances Method") is a variation of the Indicated
Survivors Method that incorporates a minimum sum of squares criterion in
the selection of an appropriate dispersion.

At the same conference, Henry R. Whiton (63) and Paul H. Jeynes (37)
each presented papers that outlined two additional procedures for esti-
mating dispersion-type and average service life from mass mortality data.
In brief, the Whiton method suggested matching cumulative retirements and
the Jeynes method suggested matching annual retirements derived from a
record of annual net additions and a theoretical remewals function. These
two methods have been named the "Simulated Plant Cumulative Retirements
Method" and the "Simulated Plant Indicated Renewals Method", respectively.

A more recent development that has attracted a certain amount of
attention is the "Simulated Plant Pericd Retirements Method". This
procedure was originally suggested by William D. Garland (24) in a paper
presented at the 1968, American Gas Association-Edison Electric Institute
National Accounting Conference. Unlike the earlier methods, Garland's
approach develops a "best-fitting" average service life for a selected
survivorship function by seeking 2 sum of differences between actual and
computed retirements approximating zero over a specified time period.1

Although the Period Retirements Method is a relatively new innovation, it

1An earlier version of the Period Retirements Method was presented by

Garland (23) at the 1967, A.G.A.-EEI National Accounting Conference. The
earlier version used a minimum sum of squares criterion.



and the Balances Method are probably the most widely used of the above
techniques.

In view of the apparent similarity in the methods just described,
they have become known (collectively) as the "Simulated Plant-Record" or
"SPR" method. As this name implies, the SPR method is simply a trial and
error procedure that attempts to duplicate (i.e., simulate) some portion
of a plant accounting record that may or may not permit age identification
of plant retirements. The method, however, is usually associated with

mass mortality data.

Actuarial Methods of Life Analysis

The actuarial methods of life analysis differ from the semi-actuarial
methods in two important respects. First, the actuarial methods require
plant accounting records that provide complete age identification of
current and past retirement experience; each unit of property must be
identifiable by‘date of installation and age at retirement. Secondly, the
actuarial methods are not a trial and error procedure; they are a proce-
dure that involves two distinct steps, both of which can be approached in
several different ways.

The first step involves a systematic treatment of the available data

1 The theory and application

for the purpose of constructing a life table.
of the life table is a well-known topic in the field of statistics. It
has many applications in various areas of research where birth, death, and

illness may take place. According to Chiang (11), the earliest life

1The format of a life table is given in Table 1, p. 32.



tables date as far back as the seventeenth century; Halley's life table
for the City of Breslau, published in the year 1693, apparently contained
most of the colummns in use today. The subject matter, however, is by no
means limited to human mortality. 2Zoologists, biologists, physicists,
engineers, and investigators in other fields have found the life table a
valuable means of presenting mortality data.

The construction of a life table for depreciation applications
usually involves one of at least five available methods. Winfrey (66,
pp. 17-18) describes these as: the individual-unit method; the original-
group method; the composite original-group method; the multiple original-
group method; and the annual-rate method. Of these five methods, only
the annual-rate method will produce a complete life table. Thne other
methods produce an abbreviated table (i.e., one that does not contain all
of the columns normally associated with a life table) that minimally
. contains an estimate of the cumulative proportion surviving.

The individual-unit method is the least sophisticated of all the
methods since it only considers units that have been retired from service;
it does not give any weight to the units remaining in service at any given
age. The cumulative proportion surviving is obtained by arranging the
retirements during a given year or series of years in ascending order
according to the age of each unit at its retirement. The sum of all such
retirements is taken as an estimate of the units exposed to retirement at
age zero. The number of units subject to retirement at the beginning of
each successive age-interval is easily obtained by subtraction and the
ratio of these exposures to the sum of all retirements provides an

estimate of the cumulative proportion surviving. Unlike the other methods,
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this method will always produce a life table extending to zero percent
(or proportion) surviving at maximum life.

The original-group method of comstructing a life table gives weight
to both the retirements and survivors of the property units installed as a
group or vintage in a given calendar year. The method does not consider
more than a single vintage, however, which will result in a censored life
table (i.e., non-zero percent surviving in the last tabulated age-interval)
if the original group is not fully retired. Clearly, the ratio obtained
by dividing the number of units installed at age zero into the number of
units surviving at the beginning of each successive age-interval will
generate the cumulative proportion surviving.

The composite original-group method is a variation of the original-
group method that can be used when the number of units in a single vintage
is deficient or the cumulative proportion surviving is extremely erratic.
. The method simply combines the retirements and survivors of equal ages
from two or more vintages into a composite group which is treated as a
single original-group. Thus, the cumzlative proportion surviving is cal-
culated on the basis of the combined total of the survivors from all
vintages included in the composite group.

The multiple original-group method is also a variation of the
original-group method wherein the cumulative proportion surviving at each
age~interval is obtained from a different wvintage. Thus, while the
original-group method considers a single vintage over a series of observa-
tion dates, the multiple original-group method considers a series of
vintages at a single observation date. Estimates of the cumulative

proportion surviving that are obtained using this method are typically
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irregular because successive vintages seldom exhibit an equal proportion
surviving at equal ages. This is not a serious problem, however, since
most life tables require some form of graduation.

The annual-rate method is the most sophisticated of the five methods
under review and will be used in this study to construct the observed life
table. The mechanics of the annual-rate method require the calculation of
a series of ratios obtained by dividing the number of units surviving at
the beginning of an age-interval into the number of units retired during
the same interval. This important ratio (or set of ratios) is variously
known as the hazard rate, the rate of mortality, the force of mortality,
the conditional proportion retired, the retirement rate, or the retirement
ratio. Having calculated this ratio for each age-interval, the cumulative
proportion surviving is obtained by multiplying the conditional proportion
retired for each age-interval by the proporiion surviving at the beginning
. of that age-interval and subtracting the product from the prcportion
surviving at the beginning of the same interval. The annual-rate method
can also be applied to multiple vintages by combining the retirements and/
or survivors of like ages from each of the vintages included in the
analysis. The data selected under either the composite original-group
method or the annual-rate method may be for a specified "additions era" or
for a specified "retirements era". The use of an additions era means that
the analysis is restricted to the record of retirements and survivors from
plant added during the years included in the selected era. The use cf a
retirements era means that the analysis is restricted to the retirement
activity of all vintages represented by survivors at the beginning of the

selected era.
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The construction of a life table by any of the above methods has been
identified as the first step in applying the actuarial methods of life
analysis. The second step involves graduating the observed life table and
fitting the smoothed series to a family of survival functions. The
functions used are either empirically derived or otherwise known to be
representative of the mortality characteristics encountered in the field
of study in which they are being applied.

Graduvation of an observed life table can be justified from both a
theoretical and a practical point of view. According to the mathematical
theory of probability, the irregularities observed in a life table of
physical property can be attributed to errors of observation or chance
fluctuations that arise because of the limited and necessarily finite
extent of the observations. If it were possible to secure unlimited data,
it is believed that the irregularities would become insignificant. Thus,

. the process of graduation can be viewed as a technique for estimating the
series of true rates of mortality that is assumed to have given rise to

As a practical matter, life tables of physical property often contain
irregularities due to events that are unlikely to occur again at the same
ages or at the same relative frequency. A major accident, for example, or
a management decision to retire a certain class of property can produce
irregular variations in a life table that are not representative of the
underlying forces of mortality. Thus, the graduation process is frequently
used to remove irregularities which the depreciation engineer has reason to
believe are not a feature Sf the true, underlying rates of mortality.

Graduation techniques are also used to extend a censored life table to zero
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percent surviving. A censored life table must be extended before the
probable average service life can be computed.

Several methods have been developed to graduate an observed series.
These methods are classified by Miller (48) as follows:

(i) The graphic method. In this method, the observed values afe
suitably plotted on graph paper and among them a smooth, con-
tinuous curve is drawn as the basis of the graduated series.

(ii) The interpolation method. In this method, the data are com-

bined into age groups and the graduated series is obtained
by interpolation between points determined as representative
of the groups.

(iii) The adjusted-average method. In this method, each term of
the graduated series is a weighted average of a fixed number
of terms of the observed series to which it is central.

(iv) The difference-equation method. In this method, the gradu-~
ated series is determined by a difference equation derived
from an analytic measure of the relative emphasis to be
placed upon fit and smoothness.

(v) Graduation by mathematical formula. In this method, the
graduated series is represented by a mathematical curve
fitted to the data.

Of these methods, the graphic approéch and graduation by mathematical
formula are the most ?idely used in the field of depreciation. The graphic
method is usually applied to the cumulative proportion surviving and may or
may not involve the use of standard curves, such as the Iowa~Type survivor

curves. If the observed data are sufficiently smooth and not extremely
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censored, a freehand curve can be drawn among the plotted points that will
be satisfactory for most applications. The use of type or standard curves
offers a refinement to the graphic method that removes much of the subjec-
tivity that is inherent in drawing a freehand curve.

The standard curves developed by Kurtz (44) and Winfrey (66) at the
Iowa Engineering Experiment Station (now known as the Engineering Research
Institute) are, by far, the most widely used. These so-called Iowa-Type
Curves were originally presented in Bulletin 103 (67) as a set of 13
generalized retirement frequency curves that were obtained from an analysis
of the retirement experience of 65 property groups.1 The original set of
13 curves was later modified slightly and expanded to include 5 additional
curves that were developed by Winfrey (66) from an analysis of 124 property
groups which included the 65 groups contained in the earlier study. The
Iowa-Type Curves now number 22 which includes &4 origin-moded curves
~ developed by Couch (14).

The Iowa Curves are mathematically described in terms of the Pearson
frequency curve family and are ciassified according to the location of the
mode of the retirement frequency curve relative to the average life as well
as the maximum height of the modal ordinate. The set now includes seven
symmetrical, five right-modal, six left-modal, and four origin-modal curves.
The mathematical form of the symmetrical frequency curves is given by
t2 )=

y = yoQ1 Y3

1The first 52 property groups contained in this study were grouped
initially into 7 type curves and published by Kurtz (44) in 1930.
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which is a Pearson type 1I. The constants in this equation are yg, a, and
m. The variable t represents age (in units equal to 10 percent of average
life) measured from the average life ordinate. The right-modal and left-
modal curves were obtained by separating the observed frequencies into a
major and a minor constituent curve, each of which was fitted to a Pearson
type I and summed to obtain the total frequency. The reSulting curves are

described by a general equation of the form

= t Mg - By Eaymeg o Eym
y Y QaQ+ Al) 1 Az) +y, (1 + az) 1 az)
where Ye’ Ay, Ay, My, My, ye, a,, a,, m;, and m, are constants. The
origin-modal curves (except for the group classified as 0;) were obtained

through trial and error adjustment of a Pearson type VIII curve which is

given by the general equation
- ty-m
y Yol +2) .

The group classified as type 0; are represented by a straight line having
an ordinate value of 5.0 for all values of t between -10 and +10.

Since the cumulative proportion surviving is the most common and con-
venient series to graduate using the graphic method, the Iowa-Type Curves
were numerically integrated to produce equivalent survivor curves that
have been drawn on sheets of graph paper to an apprdpriate scale. Thus,
an observed series is easily graduated by plotting the cumulative propor-
tion surviving on a sheet of transparent graph paper and overlaying each

sheet of survivor curves with the sheet of plotted data. The type curve
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and average life which best fit the data are determined by visual
inspection. This procedure has also been computerized using a minimum sum
of squares or a minimum algebraic sum of the differences between the data
points and the fitted curve as the selection criterion.

The Iowa-Type Curves are not, however, the only type curves available
for life studies of industrial property. In 1947, Kimball (42) introduced
the so-called h-System which was formulated by Gumbel (31) in 1933 as a
system of survival functions for human mortality. Unlike the Iowa Curves
which were empirically derived from an analysis of actual retirement data,
the h~System is described by a single mathematical function that is
derived from a theoretical consideration of the parametric form of a
truncated normal probability distribution.1 The resulting retirement
frequency curves are left-moded, however, which has possibly discouraged a
more widespread use of the system.

Depreciation personnel of the Bell Telephone System have, for many
years, used the so-called Gompertz-Makeham formula to graduate an observed
life table. This formula was also developed from life studies of human
mortality and later applied to the retirement experience of physical
property. It is reported by Jordan (38) that in 1825, Benjamin Gompertz,
in a celebrated actuarial paper, examined the effect of assuming "the
average exhaustion of a man’s power to avoid death to be such that at the
end of equal infinitely small intervals of time he lost equal portions of
his remaining power to oppose destruction which he had at the commencement

of these intervals." In other words, Gompertz assumed that man's power to

lA complete derivation of the h-System is contained in Appendix A.
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resist death decreases at a rate proportional to itself, which is equiva-
lent to the assumption that the force of mortality increases in geometric

progression. This can be stated mathematically by letting
A(t) = Be

where ) (t) is the hazard function, B and c are constants, and t is age
measured in units of time. Gompertz's expression for the survivorship
function can be derived using the well-known functional relationship

between the hazard function and the survivorship function.1 Thus, if

t t
.I. A(x) dx = .,. Bc® dx = 13 (ct -1
0 0 nc

A(t) =
= (c"-1lng = -In gct'l
where 1n g = - 12 g then the survivorship function S(t) is
S(t) sAME) o sct’l - gct—1.

This expression, however, is usually written as

ct
S(t) = kg

where k = 1/g.

lInfra, p. 38.
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In presenting his formula, Gompertz, as quoted by Jordan (38, p. 25),
stated:

"It is possible that death may be the consequence of two
generally coexisting causes: the one, chance, without previous
disposition to death or deterioration; the other, a deterioration,
or increased inability to withstand destruction.”

In deriving his law of mortality, however, Gompertz considered only the
second of these causes. In the year 1860, William Makeham combined the
two causes in a formula that turned out to be a remarkable improvement on
Gompertz's assumption. The effect of the first cause, chance, would be

the addition of a constant term to the Gompertz hazard function. Hence,

Makeham's assumption may be written as
t
A(t) = A+ Be .

Makeham's expression for the survivorship function can be derived in the

same manner as the Gompertz expression. Thus, if

t t
f A(x) dx = f (A + BSD) dx
0 0

B
In ¢

A(t)

ct—l

]

At + (*-1) = -1nst-1mg

where Inx=-Aand In g = - 1: i then the survivorship function S(t) is
t et t
S(t) = e—A(t) - eln s +1ng - stgc -1 .

Again, this expression is usually written as
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tct
S(t) = ks'g

where k = 1/g.

Makeham's contribution did not, however, detract from the usefulness
of Gompertz's formula; both of these laws possess properties that are
desirable for practical applications. Gompertz's law was employed in the
construction of the 1937 Standard Annuity Table, and Makeham's law was
used in connection with the Commissioners Standard Ordinary Mortality
Table and also with the 1949 Annuity Table.

It is not known exactly how these laws came to be used by those
working with life analysis of industrial property.1 But at some point in
time, the Makeham law, as it is called by actuaries, was renamed the
Gompertz—-Makeham formula by those in the life analysis field. Presumably,
this dual reference was intended to give credit to both authors.

Since each of these formulas contains a number of unspecified
parameters, each gives rise to an infinite number of different survival
functions. These laws of mortality thus define only the form of the
mathematical functions to be assumed and do not yield numerical measure-
ments of mortality until appropriate values are chosen for the parameters.
Although both Gompertz's and Makeham's laws appear well-suited to life
insurance applications, several researchers including Winfrey (66, p. 40)

have found that neither the Gompertz formula nor the Makeham formula

1W1nfrey (66, p. 8) reports that to his knowledge, the first printed
reference to the use of the Gompertz-Makeham formula in dealing with
retirement data of physical property was in testimony presented in 1928 by
the American Telephone and Telegraph Company before the Interstate
Commerce Commission in Docket No. 14,700.
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expresses a totally satisfactory mathematical law for industrisl
properties.

In the early 1930's, Lawrence S. Patterson, of the New York State
Public Service Commission, developed a system of generalized survival
functions that became known as the Patterson System (42). The mathe-
matical form of the survivorship function described by this system is

given by

S(t) 1-t"/2, 0

| A
(nd
|A
&

Q@ -th/2, 1 <t < 2

where t denotes the age in percent of average service life, and n is a
parameter to be determined. The variance of the generalized retirement
frequency curve of the above system (with average service life equal

_unity) can be shown to be

62 = 2/[a+ 1@+ 2)].

Thus, the Patterson System represents a two-parameter family of survivor-
ship functions, with the average service life acting implicitly as one
parameter, and the index n determined by the variance 02 of the generalized
retirement frequency curve, serving as the second parameter. According

to Kimball (42), the Patterson System is oversimplified for some purposes,
but has been found useful for turnover-cycle computations. This is not
surprising, however, since all of the retirement frequency distributions

contained in this system are symmetrical.
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While each of the above type curve systems is adaptable to the
graphic method of graduation, some may also be used in the process of
graduation by mathematical formula. In the formula method of graduationm,
the graduated series is represented by a mathematical function fitted to
the data. The application of the method involves two steps:

(i) the choice of the form of function to represent the graduated

series; and

(ii) the estimation of the parameters of the chosen function.

Mathematical functions chosen for this purpose are usually continuous,
differentiable, and involve relatively few parameters. A second or third
degree polynomial, the normal probability distribution, and the Gompertz
formula are examples of such functions. While tests applicable to the
data are sometimes helpful, the selection of an appropriate function is
largely a matter of experience. The parameters of the chosen function are
_usually estimated by the method of moments, least squares, maximum likeli-
hood, or some variation of them.

The formula method of graduation can be used to smooth and extend
either the observed retirement frequency distribution, the conditional
proportion retired, or the cumulative proportion surviving. The process
of graduating an observed retirement frequency distribution by formula is
essentially the problem considered by Kurtz and Winfrey in the development
of the Iowa-Type Curves. Their investigation, as noted earlier, resulted
in selecting the Pearson frequency curve family to represent the graduated
series, while the parameters of the chosen function were estimated by the
method of moments. Winfrey (66) later investigated the Gram-Charlier

series as an alternative to the Pearsonian system, using both the method of
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moments and the method of least squares to estimate the parameters of the
series. It is reported by Winfrey (66, p. 76), however, that ". . . the
author had little success in getting a direct fit with (the Gram-Charlier
series) except for thé symmetrical frequency curves."

A related approach to the problem of frequency graduation is discussed
by Buehler (9) who offers a formula for estimating the parameters Bi of a
function ¢(x) = B1¢;(x) + . . . + 8m¢m(x) in such a way that ¢ has approxi-
mately some specified distribution g(¢) which, for example, could be a
normal distribution. This approach is based on the work of Hammersley and
Morton (32) who investigated the function ¢(x) = a + 8x as a transformation
of observed values x grouped in a frequency distribution. Although Krane
(43) draws freely on Buehler's method in working with the hazard function,
this author is not aware of any research in the field of life anmalysis

that has used Buehler's technique to graduate a retirement frequency

. distribution.

The Gompertz-Makeham formula is the function most often chosen to
represent a graduated series of the cumulative proportion surviving. There
are differences of opinion, however, as to the merits of graduating this
series vis-a-vis the retirement frequency distribution or the conditional
proportion retired. Benson (in Ref. 51, p. 78), for example, is opposed to
mathematically graduating either the cumulative proportion surviving or
the retirement frequency distribution for the following reasons:

"The Gompertz-Makeham equation used by life insurance actu-
aries and the modified Gompertz-Makeham equation used by the

Bell System Companies are open to the serious objection that

the manipulative treatment of the data by the successive multi-

plication of 'observed' survival ratios to obtain an 'observed'

life table, before the fitting process can be begun, destroys
to a large extent the independence of the individual observations.
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Furthermore, the necessity of having to assume an end point and,
in many cases, a value for the negative logarithmic differential
at age 0 requires the introduction of judgment at an early stage
in the process. This is especially objectionable when the data
end considerably short of the ultimate limit of life."

"The Kurtz method of fitting Pearsonian frequency curves to
retirements computed from 'observed' life tables uses data even
further removed from independence than does the Gompertz-Makeham
method. "

In defense of its practice, the Bell Telephone System (2, Chapter 2,

p. 31) has taken the following position:

". . . it is sometimes suggested that, before graduating,

the Depreciation Engineer should plot the observed survival
rates (or the mortality rates which are the complements thereof)
and graduate them, first changing or relocating any points which
seem to be out of line. Otherwise, so the argument goes, unless
this is done, the entire remaining portion of the observed life
table could be thrown out of line because of some unusual happening
in a single age interval. The Bell System position on the other
hand is that the future life characteristic . . . can best be
estimated with actual past experience as a guide. To the extent
that this past experience was unusual, the Depreciation Engineer
can temper his estimates accordingly. But obviously he needs to
know what it actually was regardless of whether, or to what
extent, it appeared to be abnormal. Otherwise, he would be hope-
lessly misled by a series of 'normalized' life indications."

The Depreciation Committee of the American Gas Association and the

Depreciation Accounting Committee of the Edison Electric Imstitute (1, p.

40) have (perhaps wisely) avoided the controversy by taking the following

stand:

"In passing it may be noted that in the past there has been
some spirited controversy over the contention by some analysts
that the fitting of a smooth curve to retirement ratios was
superior to fitting the percent survivor stub curve. The consen-
sus at the present time is that neither is superior to the other.
One can sometimes obtain quite different mortality curves by
these two methods ~ from the same set of data."

The National Association of Regulatory Utility Commissioners (52, p.

117) has summarized most of the arguments advanced in favor of graduating

the conditional proportion retired as an intermediate step in the process
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of obtaining a smooth survivorship function. According to the Association,
the advocates of this method contend:
(1) that retirement ratios are the most independent since they
are nearest to the raw data;

(ii) that the retirement ratio at one age need not necessarily
influence those at other ages, as contrasted with the chain
relationship of the retirement frequency distribution or
the cumulative proportion surviving where each element of
the series depends on all those which have gone before;

(iii) that no fundamental law of mortality characteristics need
be assumed beyond that of the elementary one that the older
property is, the more likely it is to be retired.

(iv) that experience has shown that a simple type of equation
can be used to describe the retirement ratio curve, and
that therefore the data can be allowed to dictate the form
of this equation; and

(v) that consequently the mathematical procedure is simpler
than in the other actuarial methods.
The function most often chosen to represent a graduated series of the

conditional proportion retired is a polynomial of the form
AE) = Bg Bt + Bpt2+ . . .+ t" .
Experience has shown, however, that it is rarely necessary to use a poly-

nomial of greater than third degree (52, p. 118). The parameters of this

function are usually estimated by the method of least squares or by Fisher's
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adaptation of the orthogonal polynomials of Tchebycheff (50, p. 248).

One of the less obvious advantages to be gained from graduvating the
conditional proportion retired stems from an important statistical
property of the data. It is well-known (68, p. 95) that the variance of
the conditional proportion retired is different for each age-interval,
which suggests estimating the parameters of the assumed hazard function by
weighted least squares. A potential difficulty, however, is that estimates
of the hazard function are based on observed conditional probabilities and
there is clearly some correlation among these since the survivors of the
kth age-interval constitute the sample size for the (k+-1)St age-interval.
But it has been shown by Chiang (11) that the covariance between the
conditional proportion retired in two age-intervals is asymptotically zero
which, at least in large samples, eliminates the need for estimating
parameters by a generalized least squares approach. This property has
~allowed several researchers, including Henderson (33) and Lamp (45), to
investigate various methods of weighting that reflect serial independence
of the disturbance term. It should be noted, however, that zero covariance
between the conditional proportion retired in two age-intervals does not
establish their independence. In fact, it can be shown and has by Chiang
(11) that the conditional proportion retired (or conditional proportion
surviving) for two non-overlapping age-intervals are not independently
distributed.

While some attention has been given to methods of weighting, this
author is not aware of any research in the field 6f life analysis that has
considered the problem of selecting the best estimator of the hazard rate

for each age~-interval to be used in estimating the parameters of an assumed
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hazard function. A logical choice is, of course, the observed conditional
proportion retired, which is the estimator associated with the annual-rate
method of constructing a life table. Other estimators can be derived,
however, that may be superior to the conditional proportion retired. This
study will undertake such an investigation which, hopefully, will lead to
a better understanding of the mortality characteristics of industrial

property.
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STATEMENT OF OBJECTIVES

It was stated earlier that graduation by mathematical formula gener-
ally involves two steps:

(i) the choice of the form of function to represent the graduated

series; and

(1i) the estimation of the parameters of the chosen function.

This study is primarily concerred with step two which is quantitative in
nature and well-suited to empirical investigation. Step one is an equally
important consideration in the process of life analysis, but it is far more
subjective since there is no known function that expresses a totally satis-
factory mathematical description of all of the forces of retirement. This
does not, however, detract from the importance of step two; the procedure
used to estimate the parameters of the chosen function should be statisti-
cally sound regardless of the form of the selected function.

The procedure used to estimate the parameters of a hazard function in
life studies of industrial property has traditionally relied on the condi-
tional proportion retired as an estimate of the hazard rate for each age-
interval. This is a logical choice, however, since the conditional propor-
tion retired is an estimate of the probability of retirement during an age-
interval, conditioned upon exposure to the risk or forces of retirement at
the start of the interval. Intuition, experience, and research have also
led to various methods of weighting the conditional proportion retired from
which the parameters of an assumed hazard function are usually estimated
by the method of least squares.

A review of the literature in other fields of investigation reveals
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that few, if any, researchers using the methods of actuarial statistics
rely on the conditional proportion retired (or dying) as an estimate of
the hazard function. The statistic most often used in the biomedical
sciences is the so-called actuarial estimate which is obtained by dividing
the average number of survivors over a given age-interval into the number
of retirements during the interval. The parameters of an assumed hazard
function are then estimated by the method of least squares. It was also
found that researchers in radiology have used the colog of the survivor
ratio as an estimate of the hazard function. This statistic, which can be
shown to be the maximum likelihood estimate of the hazard rate, is also
used by actuaries in the development of annuity benefits. Thus, the fact
that other researchers have rejected the conditional proportion retired
suggests that it may not be the best estimate of the hazard rate for
depreciation applicatioms.

The objective of this study is to derive and compare various estimates
of the hazard rate (or hazard function) associated with the service life of
industrial property and determine which, if any, is best for depreciation
applications. The term "best" as used in this study is taken to mean an
estimate of the hazard rate that consistently yields estimates of the
parameters of an assumed kazard function that are closest to the true,

underlying population parameters.
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MATHEMATICAL DESCRIPTION OF THE DATA

This section provides a mathematical description of the life table
and a development of the probability relationships defined by the survival
functions. The notation and functional relationships introduced in this
section will be used in the next section to derive estimates of the hazard
rate which, in turn, will be used to obtain estimates of the parameters of

a hazard functiomn.

The Life Table

Consider the following time axis where t, represents a discrete point

k

in time and hk denotes an interval of time between points tk and tk+l:

— :’V:h“:»

1 t2 ts x Yk

"In depreciation applications, hk is called an "age-interval" and is
measured from the beginning of one period of otservation to the beginning
of the next consecutive period. For practical reasons, it will be assumed
" that observations are made on December 31 such that a property unit or
group of property units installed at time t; will have attained an age of

t, years at the k:h observation date.1 We will also assume that plant

k
additions and retirements are distributed uniformly throughout the year

lThe measurement of rendered service in time units of a year is
arbitrary. A unit of time less than a year (month, week, day) or units of
production (pounds, cubic feet, gallons) could be employed with no loss of
generality. The year has been adopted as a unit of measurement by virtue
of its conformity to the standard accounting interval used in depreciation
calculations.
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such that the average age of plant in service at the end of the year in
which it was installed is one-half year. This assumption (which is
equivalent to assuming that all plant additions are made on July 1) is
known in the field of depreciation as the "half-year convention". By
definition, therefore, the domain of tk is restricted to the set of num-
bers {0, %, 1%, 2%, . . .}. Thus, an age-interval can be specified either
by reference to its end points (i.e., tk - tk+1) or by reference to its
position relative to age zero which is a value of k. It will be shown
later that under the assumption of fixed age-intervals, the number of units
retired in each interval is a random variable which follows the multinomial
distribution.l

The interval of time between t, and t

k k+l

in life studies of physical property as one year. This convention (which

(i.e., hk) is often defined

ignores retirement activity in age-interval 0 - %) originated from the use
. of orthogonal polynomials in estimating the parameters of a hazard
function. This method can best be applied if the age-intervals are
equally spaced. There is nothing, however, in the definition of the
probabilities expressed in a life table which fixes the width of these
intervals. They may be chosen toc suit the needs of the problem.2

It should also be noted that the last age-interval in which a sample

of retirement data is grouped extends theoretically to infinity. Hence,

lInfra, P- 42.

zlt is noted by Reed and Merrell (55) that the term "complete life
table" is used by actuaries to designate a table in which the interval is
one year, and probabilities are stated for every year of age. This, how-
ever, 1s purely convention, since a table computed for monthly intervals
would be more complete and one for weekly intervals still more so.
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life table estimates that are a function of the width of an age-interval
are undefined for the last interval.

The notation used to describe an age-interval can be extended to pro-
vide a mathematical description of the elements of a life table. The
general format of a life table is given in Table 1. Entries in the life
table are defined as follows:

(i) Mid-point (tmk). The mid-point of the kth age-interval such

that t = (tk +t )/2; k=1, 2, .. ., n-1, where n is the

k+1
last age-interval in which retirement data are grouped.

(ii) Width (hk)' The width of the kth age-interval such that
hk = tk+1 - tk; k=1, 2, . . ., n-1. The width of the last
interval, hn’ in theory, is infinite; no estimates of the hazard
function or survivorship function can be obtained for this
interval.

(iii) Number entering the kth age—interval (Nk)' The number of units
entering the first age-interval is Nj, the total number of units
placed in service as a group or vintage at age zero. In life
studies of physical property it is assumed that all losses or
withdrawals are actual retirements from service; so-called
"right-censored" observations are not considered. Therefore, Nk
is the number of units exposed to the risk of failure or retire-
ment at the start of the kth age-interval.

(iv) Number retired (dk)' This is the number of units retired during
the kth age~interval; thus, dk = Nk - Nk+1; k=1, 2, . . ., n~1.
(v) Conditional p:oportion retired (&k). This is the estimated

probability of retirement during the kth age~interval, conditioned



Table 1.

The Life Table

Estimated
Number Conditional Conditional Cumulative Probability Estimated
Age- Mid- Entering Number Proportion Proportion Proportion Density Hazard
Interval point Width Interval Retired Retired Surviving Surviving Function Function
ti-ta ta h, N d; q P $;=1.0 f(tml) M
ty-t3 102 hj Np dz 92 P2 52 £(t ) A2
Bt Pme Mk M d U Py Sk £t Me
21" Y-l a1 Mo 4l Ipe1 Pyl Sh-1 £t pn-1) ‘-1
t -~ - - N d 1.0 0 s - --
n n n n
Where: € = (tk + tk+1)/2; k=1, . . ., n-1. Sk = Nk/Nl = pk-lsk—l; k=2, .. .,n
hk = tk+1 - tk; k. = 1, e o ey n"l. = 1.0; k = ].c
qk = dk/N ; k = ]., s o ey n—l. f(tmk) = (Sk hnd Sk+1)/hk; k = 1, ¢ o oy n-].-
Py = 1- q = Nk+1/N s k=1, ..., n-1, Ak = g(pk, qk); k=1, . . ., n=1,

A
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upon exposure to the risk or forces of retirement at the start

of the kth interval. By definition,

" N - N
R S R T PP S
k N

In depreciation applicationmns, 9 is commonly termed a "retirement
ratio".

(vi) Conditional proportion surviving (5k). This is the estimated
probability of surviving the kth age-interval, conditioned upon
exposure to the risk or forces of retirement at the start of the
k™™ interval. Thus, by definition,

N
= 1-aq k#l
pk =1

H k=1, 2, . . ., n-1. (2)
In depreciation applicatioms, Py is commonly termed a "survivor
ratio".

(vii) Cumulative proportion surviving (Sk). This is an estimate of the
probability of surviving to the start of the kth age-interval.

The estimate is given by

Sk = Prg Sk._1 = ﬁ;'; k=2,3,...,n
= 1.0 k= 1. (3)

This is a well-known life table estimate that is based on the

fact that surviving to the start of the kth age-interval means
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surviving to the start of the (k--l)th interval and then sur-
viving the (k.-l)th interval. This probability is defined for
the iast interval.

(iix) Estimated probability density function E(tmk). This is the
estimated probability of retirement during the kth age-interval
per unit width. This estimate is given by

£(t ; k=1,2, ..., n1l. %)

S

Also, from the definition of ;k and ak it follows that
= ———— & k = 1, 2, e ¢« eog n-lo (5)

(ix) Estimated hazard function (ik)' This is an estimate of the
hazard function for the kth age-interval. In the literature of
reliability theory, estimates of the hazard function are called
hazard rates -~- a term which will be adopted here and discussed
further under the heading "Estimates of the Hazard Function".
Generally, ik is a function of Sk and :;k. Thus, 1, will

k
presently be expressed as

~

A= ey, 9 k=1,2, ..., 00  (6)

The Survival Functioms
The functional relationship between the probability density function,

the cumulative distribution function, the survivorship function, and the
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hazard function has been described by Broadbent (8), Cox (15), Gehan (25),
and Jordan (38), among others. Collectively, these functions are known as
"survival functions" or "biometric functions". To derive these functions,
let T represent the life of a unit of property where T is measured from the
installation date of the property to the date of its final retirement from
service. We assume that T is a continuous random variable with one-
dimensional sample space St = {t; O < t < =}, The survival functions are
then defined as follows:

(1) Probability density function (p.d.f.), f(t). Since T is a con-
tinuous random variable, there exists a real-valued, non-negative
function £(t), called the p.d.f., such that

(a) if K is the set {t3 t; < t < t,}, then the probability
that T is in K, or the probability that a unit of

property is retired between t; and t, is given by

tz
Prit; < T < t,] =f f(x) dx, 0<t) <tp<w®
t

1
and
(b)

@
Pr[0 < T < «] =f f(x) dx = 1.0
0

where

Prt <T <t + At]
f(t) = 1lim . (7N
At>0 At
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Thus, £(t) is the instantaneous probability of retirement at
age t.

(ii) Cumulative distribution function (c.d.f.), F(t). The c.d.f.,
F(t) is defined as the probability that a unit of property is

retired before age t and is given by

F(t) = Pr[T < t], t > 0.
Thus,
o, t<O
F(t) = t . (8)
.’. f(x) dx, t>0
0
Note that
f(t) = ggésl .

(iii) Survivorship function (s.f.), S(t). The s.f., S(t) is defined as
the probability that a unit of property survives (i.e., remains

in service) beyond age t and is given by

s(t) PrT > t]

]

1.0 - F(t).
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1.0, t<©O

S(t) = ® . &)
.,. f£(x) dx, t>0
t

(iv) Hazard function (h.f.), A(t). The h.f., A(t) is the probability
of nearly immediate retirement from service for a unit of prop-

erty that is known to be in service at age t. That is,

£()  _ £() (10)

M) = TTF® S

Now, from Equation 9 it is clear that

ds(t) _ _ dF(t)
dt dt
and from Equation 8 that
_dE(®) _ _
It £(t).

These results can be combined with Equation 10 to obtain

Aey = £ o __1 45(8)
: S(t) S(t) dt

d 1n S(t)

=A(e) dat
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't
In S(t) = -;I. A(x)dx
0

t
-;,. A(x)dx
se) = e YO a1)

Let A(t) denote the cumulative hazard function, that is,

t
.I. A(x)dx.
0

and

or

A(t) =
Then
s(t) = exp{-A(t)}
and from Equations 8 - 10
F(t) = 1-58(t) = 1 - exp{-A(t)} a12)

and

£(t) i‘%fﬂ = expl-A(D)} %_:(:_)

A(t)exp{-A(t) 1. | o ad

[
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Thus, given any one of the four survival functions, the other three can be
derived from equivalent functions. If S(t) or F(t) is given, £(t) is
obtained by differentiation and A(t) is obtained using Equation 19. If a
form of £(t) is given, then F(t) is obtained using Equation 8, S(t) is
obtained using Equation 9, and A(t) is obtained from Equation 10.
Similarly, if A(t) is given, S(t) is obtained from Equation 11, F(t) from

Equation 12, and f(t) from Equation 13.
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ESTIMATES OF THE HAZARD FUNCTION

The purpose of this section is to discuss certain nonﬁarametric
methods for estimating the hazard function for each age-interval. In
particular, we are seeking a sample estimate of the hazard rate for each
age-interval that can be used to obtain estimates of the parameters of a
hazard function (presently umspecified) using ordinary regression methods.
We are also interested in the efficiency of the parameters estimated by a
welghted least squares procedure where the weights W, are either 1.0,
1/62}(ik s OT Niﬁk. It 1is necessary, therefore, to obtain an estimate of
the variance of the hazard rate (i.e., ﬁg}(ik) for each of the methods used

to estimate the hazard function.

Conditional Proportion Retired
When the underlying mathematical law of mortality is unknown, the
_survivorship function S(t), and hence the hazard function A(t), can be
estimated from the values §k and ik respectively, in the life table. One
of the simplest functions for ik is obtained by substituting the life table
estimates for £(t) and S(t) into Equation 10, i.e., to use the estimate

E(t mk)

e T -
Sk

It should be noted that this estimate is the ratio of the estimated p.d.f.
at the mid-point tmk of the kth age~interval and the cumulative proportion
surviving at s the beginning of the kth age-interval. Using Equation &

we can write



and from Equation 3,

- i Sl T R B
B R by N
But, from Equation 1, dk/Nk is ak’ the conditional proportion retired.

Thus,

.4
Ak=q; k=1,2, . . ., n-1. (14)
The conditional proportion retired is commonly used by depreciation
engineers as an estimate of the hazard function. However, it is seldom,
if ever, used by researchers in other fields. This observation is sup-~
ported by a rather extensive literature search in the field of actuarial
statistics and the biomedical sciences in which no example could be found
wvhere the conditional proportion retired (dying) was used as arn estimate
of the hazard function. By the same token, no example could be found in
the literature of depreciation where an estimate other than the conditional
proportion retired was used.
An estimate of the variance of ik can be obtained from the sampling
distribution of Nk (the number of units entering the kth age-interval) and

d, (the number of units retired during the kth

age-interval). The number
of units entering the first age-interval (i.e., N;) can be viewed as Ny

independent trials of a random experiment where each trial can have one of
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several outcomes. The "outcome" of a particular umit (tria}) may be
retirement during the first age-interval, the second age-interval, . . .,
or the n':h age-interval. Let dj, d2, . . ., dn denote the number of units
retired during the first age-interval, the second age-interval, . . ., and
the nth age-interval respectively. Also, let ek denote the probability
that a wnit is retired during the k' age-interval (k = 1, 2, . . ., m).

Thus,
ek = E[qksk]

where E is expected value. Assuming that the N; umnits act independently,
it can be shown that the n~dimensional random vector (dj, dz, « « «» dn)
is a multinomial random variable with parameters (N;; 63, 62, - « «» en).
Thus,

E[dg‘] = Nle k = 1’ 2’ e o o9 n

©
Var(d,) = N0, (1 - 8))

Cov(d,, 4) = N16,8,; jfk

It can also be shown that Nk’ the number of units surviving to the

beginning of the kth age-interval is a binomial random variable such that

n
EN = B Y o6 = M- 4
i=k
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n k-1
Var(n) = Ni( Z 8,)( z 8,)
i=k i=]1

where

k-1

4’1("291‘

i=1

Consider the random variable ak = dk/Nk’ which is the proportion of

those units surviving to the start of the kth

during the kth interval. Then,

age~interval that are retired

R L EQRY
and
Var(g) = ENk [Var(% | Nk)] + VarNk(E {% | Nk] )
where E, 1s the expectation and Vary is the variance with respect to the

random variable Nk. Now, it can be shown that the conditional distribution
of dk’ dlc-l-l’ e o oy dn given Nk is multinomial with parameters (Nk; qk,

Qs * * oo qn-l) where 9 = ek/ a- ¢k). Therefore,

Elg, | ®] = Na
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Var(d, | §) = Mg (1 -q)

cov(dj’ dk) - .qujqk; j * k'

Hence,

E[&k] = E“kl:z [%

and

Var (:;k) = ENk

"

lnk]] - E“k[%‘;"qu] - lyl < g

0
e - o) + »ﬁ"@’{

1

But, using the Taylor series expansion which is applicable when N; is

large,

b 1

E(:] = o= = 1 1t ema—e| & ot

Thus, an approximate value

Var(a.) =
K

of the variance of ak is

- qk(l - qk)

(15)



45

However, estimates of these parameters are

, qk = -N; ’
and
e
nMA-~-é) = N.
Therefore,
. q, (1~ q)
fai(q) = S5— (16)

"

Having obtained an estimate of the variance of ak’ an estimate of the

variance of ik is given by

1 N,
'ﬁ-k? Var(qk) .

i-a}(ik) = Tax(—=%)

Thus, for large samples,

B, R

Tai(y) = an

It should also be noted that the expected value of ik d.e., E[ik]) is

given by

- :‘k s %
E[A] = E[*] = —Elq] = — (18)
WU R T R TR

which was implicitly used to obtain the variance of &k’
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Actuarial Estimate

The so-called actuarial estimate of A(t) is conmsidered by Gehan (25),
Kimball (41), and Watson and Leadbetter (58), among others. This estimate
can also be derived by substituting life table estimates of f(t) and S(t)
into Equation 10 which defines the hazard function A(t). However, rather
than estimating S(t) by ék’ it is assumed that S(t) can be expressed as a
linear function over the interval hk such that plant retirements are
distributed uniformly between tk and tk+1' It is reasonable, therefore, to
estimate S(t) by the average cumulative proportion surviving at the mid-

point of the interval. Thus, the actuarial estimate of A(t) is

£(t )
- k.
A T3
S(tmk)
2£(t )

I ]
Using Equation 4, the actuarial estimate of A(t) can be written as

A

s 2(S, - Sp49)

T Gt )

and, from Equation 3,

L. ek, P S
Byl + BN B (% + N )

But, from Equation 2, (Nk - Nk+1)luk is 1 - p, and (Nk + N§+1)/Nt is
1 +»pk. Making these substitutions, we obtain
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) 2(1 - p,) 24
A om ——— = — (19)
h (1 + ) h (1 + pk)

In words, the actuarial estimate is the number of retirements per umit
time in the interval divided by the average number of survivors during the
interval. This form is most often used in the biomedical sciences when the
ages at death within the interval are not known.

The expected value of ik can be obtained from a restatement of
Equation 19 in which d,‘ll‘lk is substituted for 9y and Nk-l-l/Nk is substituted
for i;k' Thus,

LA
This estimate can be treated as a function, f (dk’ Nk - -2—-), of two random

- variables and using a Taylor series expansion up to the second term (i.e.,

i=2),
s S
i - ol -5 | varfay §k>]

"k[“mk - %)] Mo [ Hex, - ;“:-)] v, - 55

where u dk denotes the expected value of dk and u (Nk - _dk) denotes the
2

expected value of (Nk - 2—). Using the conditioning argument that

BN ] = zukw,(ik | 801

where Euk is the expectation with respect to the random variable Nk’ and
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the fact that conditional on Nk, dk is a binomial (Nk, qk) random variable,

- q Q-gq) q (1 -4q)
Enk'nk] s k 14 kT Lk k
G % Y. o
B (1 -3 wN@A-3) Q-3
and

- q q (1 - q,) 1-gq) 1
E[y] = k 1+-£ k4 k E[—l-j
(1_&) 4(1-112)2 2(1-3) Nk

A -3 2 2

vhere q, = ek/(l - ¢k). Since N, is a binomial [N;, (1 - ¢k)] random

variable,
1] . 1 %
) —r—@'[ * - w] '
_ Therefore,
- q q(l-q). d-gq) 1
Elnd = * 5 7 * qkk * qz
b (1 -3 41 - 392 20 -3 ML - ¢)
[1 +__?£___] ] (20)
Nl(l - ¢k)

An estimate c¢f the variance of'ik is suggested by Gehan (25) whose
development proceeds as follows:

Let
6 = ElgS§], v, = Eld],
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k-1 k-1 k-1
¢k=261’ “k'zvi’ mk’zdi’

i=1 i=1 i=1
S = &V Smy = om-y

where E is expected value. Now, if a sample of N; units is followed until
all are retired and each retirement is recorded as occurring in one of n
fixed intervals, the joint distribution of the number retired is

multinomial. From Equation 19 the estimate of the hazard rate for the kth

age-interval can be written as

i - 29 %
B(1+p) BN -d/2)

and

Vari: dk ] =
B = my = 4/2)

-]

é s
b (N = e = v /2) [1 - ke - % ]
Ny - u - vk/Z) 2(N; - U - vk/2)

Var

and this is approximately

~

s é § 8
X (1 2%, ™ . 4 )
hk(Nl -u - kaZ) v p-u - kaZ) 2(N; -y - vk/2)

=Var
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[ v ]2 [ (84,)? (sm, )2 (84,)2
= E + +
bk(Nl -u - vk/Z) vkz N - o - Vk/2)2 4(N; - u - Vk/Z)z
2(5d,) (6m,) (8d, )2 (8m, ) (84,)
. o) % ,_ GmpGy

vk(Nl - uk - vk/2) vk(Nl - uk - k/2) (N1 - u.k - Vk/2)2]

since E[Gdk] = E[Gmk] = Q.

. With the assumption of multinomial sampling,
E[6q, 1% = W (1 -6),  Elm]? = N4 (1 - ¢)

and E[Gdemk] = N8 ¢y - Making these substitutions and after consider-
able simplification, we obtain

- 6y 8, 2
Var(A.k) = 1- [ ] .
Nib 21 - ¢, - 6,/2)2 21 - ¢, - 68,/2)2

This formula assumes complete ascertainment of survival times. For

incomplete samples we use

O * 5% L8

offe
=t
|
[ RS

where = means is estimated by. With these assumptions and replacements,

the estimated variance of ik becomes
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3 2
Vat(ik) = i-k—.— 1- [E:—A—k-] . (21)
Niq,

Maximum Likelihood Estimate
h

It was shown earlier that the number of units retired during the kt

age-interval (dk) from the units installed at time zero (N;) is a multi-

nomially distributed random variable. The likelihood of the sample can be

written as
Ny! 4 d, dg d
Psg = ———q; (P192) (P1P293) - - - (P1 .- . P ;)
IT %"
k=1

4y dz dp d3 d3 dj
== 41 P1 92 P1 P2 493 - - -P1 - - - Ppg

k=1
= ;;—n P1 92 P2 e 943 Pupg
1i %!
k=1
Np! dy No ds; N3 d N
- n-1 n
——ﬁ 91 P1 92 P2 - - -9 5 P,
d‘k!
k=1
N;! n-1 n-1
(22)

k=1

N IT = t IT %
ka1
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where Py and q, are the true conditional probabilities of surviving and
retiring in the kth age-interval, i.e., 9 is-the probability of retirement

th h

during the k~ age~interval conditioned on the unit surviving to the kt

th
a

age-interval. Similarly, is the probability of surviving the k ge~

Py
interval conditioned on the unit surviving to the kth age-interval.

We now consider a formulation of the hazard function that was sug-
gested by Sacher (57) and used by Gehan and Siddiqui (26) to analyze sur-
vival data for patients with plasma cell myeloma. Our motivation for
considering this model will become apparent when the results are used with
Equation 22 to obtain a maximum likelihood estimate of the hazard rate for
each age-interval.

Suppose that a sample of survival times is grouped into age-intervals
that are small enough so that it is reasonable to assume that the hazard

function is constant within each age-interval.1 In other words, we assume

_that

AMe) = A g <ttt ,k=0,1, ..., 080N

Under these conditions, p, can be written as

PriT > tk +hk]
PriT > tk]

P, = Pr(T>¢t +h | > t]l =

lThis is not unreasonable for industrial applications since (as
defined on p. 31) is typically small in relation to the expected séervice
life of a property unit at age zero. Furthermore, plant additions and
retirements are usually recorded on an annual basis and treated as a mid-
year occurrence for life studies and depreciation accounting. Sample data
of this type would not, therefore, represent an increasing or decreasing
hazard rate within an age-interval.
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where hk’ as defined earlier, is the width of the kth age-interval. Since

A(t) is now taken to be a step~function, we can replace the integral in

Equation 11 with a summation operator and write

po k -1
exp | - Z Aih 4
Pr[T > tk + h.k] =1 i
p = = = - —
k Pr[T > tk] k-1
exp z lihi
L 1=1 o
= exp -{kkhk}. (23)
Similarly, using Equation 2 we can write
Pr[t:k <T< ty + hk]
Y = =1- P
Pt[T > tk]
= 1- exp{-lkhk} . (2"})

We now have a specification for Py and 9 in terms of the hLazard
function which can be used with Equation 22 to obtain a maximm likelihood
estimate of the hazard rate for each age-interval. Thus, making these

substitutions for Py and 9 in Equation 22, the likelihood of the sample

becomes

U e B
H dk k=1 k=1

k-1

Ps =

and taking the logarithm we obtain
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-1 -1 _ hk
L = lnPs = mnlz-z Akbknkﬂ+2 dkln(l-exk )
k-l - k=l
i | L
k=1

The value of Ak (i.e., ik) which maximizes L can be found by differenti-

ating with respect to Ak and setting the derivative equal to zero,

& - o g -

l-e

0; k = l’ 2, o o oy n-ln

Thus, to solve for ik we must solve

oty
e “F
"

0

Ny t

1

from which we obtain

e-ikhk - Nen
N td

Now, by definitionm, Nygyt+d = N and, from Equation 2, nk-l-lluk = l;k'
Therefore,
The

and the maximum likelthood estimator for kk is
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A = - %—k— In p,. (25)

Although Equation 25 was derived from a cohort life table which
describes the retirement experience of a single vintage, it is a simple
matter to extend this result to a series of cohorts in which the retirement
experience of several vintages is combined to obtain an estimator for xk
To show this, we extend our notation to include double subscripts where the
first subscript denotes a vintage and the second subscript denotes an age-
interval measured from the installation date of the same vintage. Thus,

Nj k for example, identifies the number of umits from the jth vintage
entering the kth age~interval.

Now, suppose that we have a homogeneous population in which each
vintage is subject to the same forces of retirement and in which the con-
ditional probability of retirement for one unit of property is not influ-
-enced by the retirement of any other unit in the group. Under these con-

ditions N; can be viewed as the sum of all units entering the zero age-

interval from all vintages included in the group. In other words,

Nk = Z Nj,k’ (26)

- It follows then, from our assumption of independence that Equation 22
can be viewed as the likelihood of a sample obtained from a random experi-
ment that is repeated m times. We can, therefore, restate Equation 25 in
terms of m multiple vintages without changing the likelihood function.

Thus, using Equation 26, we obtain
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~ 1 F
T Tp PR
“In(H,, /N)
B,
n m
(Y By /D By )
j=1 j=1
- (27
By

The expected value of ik can be obtained from a restatement of
Equation 24 in which 1 - dk/Nk is substituted for P- Thus,

: 1 4%

A, = -=—In(1-3).

& By "

Since Ak = f(pk) ig a function of the random variable ;k’ a Taylor series

. expansion about the expected value u; of Pp yields
k

i
s . :E:g;d £ IR
A f(up ) + 1 -1 (pk M )

k3o Ay " k

D,

). 9

and
- . o 1 ale - .
E“k] = f(up ) + I E[Pk - Hg 1.

ko a1 9P " k

Py

If the Taylor series expansion is limited to two terms (i.e., 1 = 2), then
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1Ll = -1 - 1 AR |
Ef21 hlsln(l qk)"'wﬁ[(?k upk)]

. 1 - 1 -
= - B In(1 - q,) + 2 - a2 Var(p,)
where
n
q = 6/ -¢) = eklz o, -
i=k
But,
Var(sk) = Var(l - ;‘Ni- ) = Var( ile: )
and

Var(;-:-) - ENk[Var(;f | Nk)] +VarNk(E[% | nk] ).

Since E [i | nk] = q,, a constant, and

Nk

& g ~ q)

R R

Var(
it follows that

Var( %E) = q (1 -q)E [-;:] .

From Equation 15,
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Elz+1 =

N@a-¢)

L
for N; large. Therefore,

a4 q (1 - q)

Var( —

N N;(1 - d>k)
and

R | Y

An approximation of the variance of the maximum likelihood estimate
can be obtained by considering the first term of a Taylor series

expansion. Thus,

3 = " - ~ 2 = gg- 2 S
Var(lk) E[p - (upk)] ( df)k ) Var(pk)
u-
Pe
B2(1 - q)? | Q- ) |
q.
s k ] (29)

An estimate of the variance of A'k (1.e., @()k)) can be obtained from the

sample estimates of 9 and N;(1 - ¢k). These estimates are

~ -~

% T %
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and

a— e —
Nl (1 - ¢k) = Nk'

P P q;
Var(h) = —— (30)
B NP
k
provides an estimate of the variance of Ak that can be used to obtain a

weighted regression estimate of the parameters of a hazard function.
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METHOD OF ANALYSIS

Having derived various estimates of the hazard rate for each age-
interval, it would be helpful to know which, if any, of these estimates is
in some sense '"best" for depreciation applications. Since the variance of
the estimated hazard rate is different for each age-interval, a related
question becomes which, if any, method of weighting combined with a given
estimator provides the best estimate of the parameters of an assumed
hazard function.

To make this comparison, a Monte Carlo study was undertaken in which
random samples were drawn from each of four different models of the hazard

function A(t). The models chosen for this analysis include:

1) A(t) = 2Ag; A9 > 0 (exponential distribution)
(iij A(t) = 1A + At A(t) > 0 (linear hazard function)
(1ii) A{t) = expidy + A t}; A(t) > 0 (Gompertz distribution)
(1v) A(E) = Agrgtrl7L; Ag» A; > 0 (Weibull distribution)-

For each of these models, either the hazard function or its logarithmic
transform is a function of the parameters Ag, A; and t (or In t).
Consequently, the parameters of these models can be estimated by least
squares, or by weighted least squares since the variance of the estimated
hazard rate is different for each age-interval. |

The equations fitted to the samples drawn from the four models are:

(i) ik = )Ag (exponential distribution)
(11) A, = Ag+ A (linear hazard function)
(ii1) In ik = Ap + lltmk (Gompertz distribution)

(iv) 1n Ak = In (Ag2) + (A; - 1) In t (Weibull distribution)

nk
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where for all models, k=1, 2, . . ., n-1.

The regression equations for all models can be written in the form
Y = Tax+¢e

where Y is an (n-1) x 1 vector of observed hazard rates (or their natural
logs) taken from the life table; T is an (n~1) xj matrix (j = 1, 2) which,
depending on the model, contains ones and age-interval mid-points; A is a
j x 1 vector of parameters; and ¢ is an (n-1) x 1 vector of errors with

expectation zero and sample variance matrix,

rx?(: ) 0

<)
]

0 v(tm,ti--l)

b o

This matrix is taken as diagonal since, as discussed earlier, it is not
.difficult to show that for large samples the covariances of the hazard
rates are asymptotically zero. For the purpose of this study, the elements
of G are estimated by‘gg?(ik) which are given by Equation 17 when the
elements of Y are estimated by Equation 14 (the conditional proportion
retired); Bquation 21 when the elements of Y are estimsted by Fauation 19
(the actuarial estimate); and Equation 30 when the elements of Y are
estimated by Equation 25 (the maximum likelihood estimate). When the
elements of Y are 1n ik’ ;(:mk) is given by‘ﬁZ?(ik)/xkz.

A weighted least squares estimate of the elements of A (1.e., the

parameters of the underlying hazard function) can be obtained by minimizing

2 = (Y~-TA)'W(E - TA)
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where

wl 0
W= .
0 LAY

is an (n~-1) x (n-1) matrix of weights. The weights considered in this
study are: 1.0, 1/6;;(ik), and Nkhk'
It is well-known that the vector of least squares estimates of the

parameters is given by
3 t i
A = (T'WI) "T'WY

and the estimated variance~covariance matrix of ) by

where
L o= (WD) lrw .

These calculations have been computerized by Kennedy (in Ref. 40)
whose program was obtained from the Texas Medical Center and wmodified for
the purpose of this study. A listing of the modified version of this
program is contained in Appendix B. The general method of estimation of

parameters can be described as follows: first, the program obtains sample
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estimates of the hazard rates using the conditional proportion retired, the
actuarial estimate, or the maximum likelihood estimate for each age-interval
over the observation period. From the sample estimates of the hazard rate
for each age-interval, the program obtains estimates of the parameters for
the four models (both weighted and unwelghted) by ordinary regression
methods. Finally, using the least squares estimates of the parameters, the
program computes the hazard, survivorship, and probability density functionms
for each of the four models. Because the width of the last age-interval is
theoretically infinite, estimates of the hazard and probability density
functions are not defined in that interval. An additional feature of the
program that was not incorporated in this study is the calculation of a x2
statistic that can be used in selecting the best fitting model.

A second computer program was used to draw random samples from the
four hazard functions chosen for this amalysis. The program was originally
_written by this author (62) to simulate the retirement experience of
industrial property drawn from a population described by the Iowa-Type
survivorship functions. The program was modified to accommodate the four
hazard functions used in this analysis and linked via disk output to the
"Actuarial® program for estimating parameters by the above regression
methods. The technique used to generate aged retirements is the well-
known Monte Carlo simulation procedure. A retirement is simulated by
drawing a random number between 0.0 and 1.0 from a2 uniform distribution,
where each number drawn represents a unit of property. The age of a
retirement is determined by calculating the value of t associated with a
specified cumulative distribution function that has an ordinate value equal

in magnitude to the vaiue of the random number. This process is repeated
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N, times (i.e., the number of units installed at age zero) and a tally is
kept of the number of unitsvretired in each age-interval.

The population parameters assigned to the distributions (i.e., models)
used in this study were selected to produce an average service life of
approximately five years. This selection was viewed as a reasonable
compromise between obtaining a sufficient number of age-intervals to
conduct a meaningful analysis and minimizing the amount of computer time
needed to generate a series of random samples and estimate the parameters.

The values of the population parameters used in this study are as follows:

Model Ao AL
(1) Exponential distribution 0.20 -
(ii) Linear hazard function 0.10 0.02
(iii) Gompertz distribution -2.00 0.07
(iv) Weibull distribution 0.08 1.50 .

A secondary consideration in this study was whether or not a given
 estimator combined with a given method of weighting consistently provides
a "best" estimate of the population parameters under varying degrees of
censoring. This guestion was investigated by truncating a complete life
table for each model at two leveié of censoring and estimating parameters
from the censored data. The two levels of censoring were arbitrarily
selected to produce a "lightly censored"” life table ending at about 202
surviving and a "heavily censored" life table ending at about 602
surviving.‘ The value of the survivorship function containing the popu-
lation parameters and the corresponding age at which the life table was

truncated for each model is as follows:
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lightly censored heavily censored
Model age sS(t) age s(t)

(1) Exponential distribution 8.5 18.27% 2.5 60.65%

(ii) Linear hazard function 8.5 20.75 3.5 62.34
(iii) Gompertz distribution 8.5 20.76 3.5 58.46
(iv) Weibull distribution 7.5 19.33 3.5 59.22 .

The results of this analysis are summarized in Tables 2 thru 13.

Each of the 12 tables contains various estimates of the parameters and
related statistics derived from 27 different analyses of a given model and
degree of censoring. The first 3 tables provide a comparison of the
average estimates obtained when the underlying distribution was exponential.
Tables 5 thru 7 contain the averages of parameters estimated when the
underlying distribution was a linear hazard function. The average esti-
mates obtained when the underlying distribution was Gormpertz is shown in
.Tables 8 thru 10, and the averages obtained from a Weibull distribution

are shown in Tables 11 thru 13.

In total, 48,600 life tables were generated by drawing random samples
containing either 100 or 1000 units installed at age zero. Parameters were
estimated for both 100 and 1000 umit vintages in order to determine whether
or not a given estimate of the hazard rate is sensitive to the size of the
sample. An example of a generated life table, estimates of the parameters,
and estimates of the hazard, survivorship, and probability density function
is contained in Appendix C.

Each of the 12 tables is also partitioned according to the number of
replications included in each study. Averages of the parameter estimates

were computed from either 50 or 100 vintages (i.e., replications)



Table 2. Exponential distribution -- complefe data

Re50 N;=100

R=100 N;=100

R=50 N,=1000

Wl w2 W3 Wl w2 W3 w1l W2 w3

Conditional Proportion Retired

Xo .1822 1464 .1758 .1825 .1452 .1763 .1844 .1768 .1819

Bias, ~-.0178 -.0536 -.0242 -.0175 -.0548 -.0237 -.0156 -.0232 ~-.0181

S.D.Ag .0226 .0230 .0169 .0217 .0241 .0161 .0122 .0070 .0048

M.S.E. .0286 .0582 .0294 .0278 .0598 .0286 .0197 .0242 .0187
Actuarial Estimate

Xo .2087 .1589 .1963 .2093 .1593 .1969 .2085 .1933 .1997

Bias .0087 -.0411 -.0037 .0093 -,0407 -.0031 .0085 =~-.0067 =~-.0003

S.D.Ag .0290 .0232 .0206 .0280 .0225 .0197 .0157 .0071 .0057

M.S.E. .0300 .0471 .0207 .0294 .0465 .0198 .0177 .0097 .0057
Maximum Likelihood Estimate

Xo .2111 .1594 .1975 .2117 .1600 .1982 .2104 .1938 .2004

Bias, .0111 -~.0406 -.0025 .0117 -.0400 -.0018 .0104 ~-.0062 .0004

S.D.Ag .0299 ,0232 .0209 .0291 .0222 .0200 .0163 .0070 .0057

M.S.E. .0316 .0466 .0208 .0312 ,0457 .0200 .0192 .0093 .0057

99



Table 3. Exponential distribution -- 1ight1§ censored

R=50 N;=100 R=100 N;=100 R=50 N;=1000
w1 w2 w3 Wl w2 w3 Wl w2 w3

Conditional Proportion Retired

Xo .1781 .1660 .1808 .1791 .1663 .1815 .1819 .1809 .1823

Bias, -.0219 -.0340 -.0192 .0209 -.0337 ~.018 -,0181 -.0191 -.0177

S.D.Ag .0218 .0206 .0185 .0195 .0197 .0187 .0056 .0058 .0058

M.S.E. .0307 .0396 .0265 .0285 .0390 .0262 .0189 .0199 .0186
Actuarial Estimate

Ao 1971 .1749 .2000 .1981 .1753 .2006 .1991 .1974 .1996

BiasA -00029 -00251 00000 "00019 -00247 00006 -00009 -.0026 ".0004

S.D.2Ag .0267 .0245 .0225 .0240 .0228 .0229 .0067 .0069 .0069

M.S.E. .0266 .0349 .0223 .0240 .0335 .0228 .0067 .0073 .0068
Maximum likelihood Estimate

Ao .1980 .1748 .2009 .1990 .1752 .2015 .1997 .1979 .2003

Bias, -,0020 -.0252 .0009 -.0010 -.0248 .0015 -.0003 ~-.0021 .0003

S.D.Ap 0271  ,0246 .0229 .0244 .0229 .0233 .0068 .0070 .0070

M.S.E. .0269 .0350 .0227 .0243 .0337 .0232 .0067 .0072 .0069

L9



Table 4. Exponential distribution -- heavil& censored

R=50 N;=100 R=100 N;= 100 R=50 N;=1000
Wl w2 W3 Wl w2 w3 Wl w2 w3

Conditional Proportion Retired

Ao .1812 .1760 .1835 .1839 .1778 .1848 .1846 .1826 .1836

Bias, -,0188 ~-.0240 -.0165 -.0161 ~.0222 -,0152 -.0154 ~.0174 -.0164

S.D.Ap 0253 .0259 .0246 .0250 0256 .0248 ,0086 .0086 .0084

M.S.E. .0313 .0351 .0294 .0296 .0338 .0290 .0176 .0194 .0184
Actuarial Estimate :

Xo .1976 .1882 .2012 . 2004 .1906 . 2026 .2000 .1986 .1999

Bias, -.0024 -.0118 .0012 .0004 ~-.0094 .0026 .0000 -.0014 ~.0001

S.D.}p ,0296 .0308 .0295 .0294 .0300 .0300 .0100 ,0102 ,0100

M.S.E. .0294 ,0327 .0292 .0293 .0313 .0300 .0099 .0102 .0099
Maximum Likelihood Estimate

Xo .1982 .1883 .2020 .2011 .1908 .2033 .2005 .1991 .2004

Bias ~-.0018 ~,0117 . 0020 .0011 ~-.0092 .0033 .0005 =.0009 .0004

S.D.}g ,0298 .0310 .0299 .0297 .0301 .0303 .0101 .0102 .0101

M.S.E. .0296 .0328 .0297 .0296 .0313 .0303 .0100 .0101 .0100
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Table 5. Linear hazard function -- complete data

R=50 N;=100

R=100 N;=100

R=50 N;=1000

Wl w2 w3 Wl w2 W3 w1l w2 W3
Conditional Proportion Retired
Xo .1069 .1016 .1078 ,1083 +1034 .1082 «1142 +1022 .1012
Bias, .0069 .0016 .0078 .0083 .0034 .0082 +0142 0022 ,0012
S.D.Ap .0343 .0254 .0212 .0389 0265 .0248 .0265 .0088 .0088
M.S.E. .0346 .0252 0224 .0396 .0266 .0260 .0298 .0090 .0088
M .0139 .0101 .0131 .0138 .0100 ,0131 .0134 .0145 .0154
Bias, -.0061 .0099 -.0069 -~.0062 -.0100 -.0069 -.0066 .0055 ~.0046
S.D.Ay .0072 .0061 .0051 .0080 .0064 .0056 .0042 .0020 .0018
M.S.E. .0094 .0116 .0085 .0101 .0119 .0089 .0078 .0058 .0049
Actuarial Estimate
Ao .0984 .1008 .1075 .0999 .1024 .,1080 .1016 .1028 .1013
Bias -.0016 .0008 .0075 <~.0001 .0024 .0080 .0016 .0028 .0013
S.D.Ag 0471  .0272 .0248 .0536 .0270 .0300 .0406 .0094 ,0108
M.S.E. .0467 .0269 .0257 .0533 .0270 .0309 . 0402 .0097 .0108
A .0203 .0123 .0178 .0203 .0123 .0178 .0196 .0181 .0195
Bias .0003 =-.0077 -.0022 .0003 -.0077 -.0022 -.0004 .0019 .0005
S.D.\ .0106 .0066 .0065 .0116 .0063 .0072 .0066 .0021 .0023
M.S.E. .0105 .0101 .0068 .0115 .0099 .0075 . 0065 .0028 ,0023
Maximum Likelihood Estimate
Ao .0939 +1006 .1058 .0950 .1021 .1062 .0939 1025 .1004
Bias, ~-.0061 .0006 .0058 ~.0050 .0021 .0062 .0061 .0025 .0004
S.D.Ag .0503 .0272 .0251 .0583 .0266 .0308 .0469 .0094 .0111
M.S.E. .0502 .0269 .0255 .0582 .0265 .0313 .0468 .0096 .0110
A\ .0216 0124 .0186 .0217 .0124 .0186 .0212 .0183 .0200
Bias, .0016 .0076 --.0014 .0017 ~.0076 -.0014 .0012 .0017 .0000
S.D.Aq .0116 .0066 .0067 .0130 .0062 .0076 .0076 .0021 .0024
M.S.E. .0116 .0100 .0068 .0130 .0098 .0077 .0076 .0027 .0024
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Table 6. Linear hazard funct:ion -- lightly censored

R=50 N;=100 R=100 N;=100 R=50 N;=1000
wl w2 w3 Wl w2 w3 w1 w2 w3
Conditional Proportion Retired
Xo .0986 .0913 .0984 .0991 .0919 .0987 .0980 .0961 .0972
Bias, -,0014 -.0087 -.0016 -.0009 ~-.0081 -.0013 -.0020 -.0039 -.0028
S.D.)g .0299 .0299 ,0261 .0287 .0267 .0257 .0096 .0085 .0088
M.S.E. .0296 .0309 .0259 .0286 .0278 .0256 .0097 .0093 .0092
Xl .0158 .0147 .0162 .0158 .0147 .0162 .0164 .0167 .0167
Bias, -.0042 -.0053 -.0038 -.0042 -.,0053 -.0038 ~.0036 =~.0033 =-.0033
S.D.\y .0093 .0092 .0080 .0084 .0080 .0073 .0027 .0022 .0023
M.S.E. .0101 .0105 .0088 .0094 .0096 .0082 .0045 .0040 .0040
Actuarial Estimate
Xo .1007 .0941 .1010 .1014 .0947 .1014 .1004 .0987 .0998
Bias .0007 ~.0059 .0010 .0014 -.0053 .0014 .0004 <-.0013 ~-.0002
S.D.)p .0355 .0334 .0305 .0342 .0295 .0303 .0112 .0094 .0102
M.S.E. .0352 ,0336 .0302 .0341 .0298 .0302 .0111 .0094 .0101
¥ .0196 .0162 .0199 .0195 .0162 .0199 .0197 .0198 .0200
Bias, -.0004 -,0038 .0001 -.0005 -.0038 -.0001 -.0003 -.0002 .0000
S.D.)y .0119 .0109 .0100 .0106 .0096 .0091 .0033 .0026 .0028
M.S.E. .0118 .0114 .0099 .0106 .0103 .0091 .0033 .0026 .0028
Maximum Likelihood Estimate
X0 .1003 .0942 .1008 ,1012 .0948 .1012 .1003 .0986 .0997
Bias'\ 00003 -00058 00008 00012 "00052 00012 00003 "'0001!‘ "'00003
S.D.}g .0360 .0335 .0308 .0347 .0296¢ .0307 .0114 .0094 .0102
M.S.E. .0356 .0337 .0305 .0345 .0299 .0306 .0113 .0094 .0101
A .0199 ,0161 .0202 .0197 .0161 .0202 .0199 .0199 .0201
Bias -.0001 -.0039 .0002 -.0003 -.0039 .0002 -.0001 =-.0001 .0001
S.D.2y .0122 ,0109 .0102 .0109 .0096 .0093 .0033 .0026 .0028
M.S.E. .0121 .0115 .0101 .0108 .0103 .0093 .0033 .0026 .0028
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Table 7. Linear hazard function =~ heavily censored

R=50 N;=100

R=100 N;=100

R=50 N;=1000

wl w2 w3 12 w2 W3 Wl w2 W3
Conditional Proportion Retired
0 .0967 .0889 .0962 .0974 .0894 .0971 .0952 .0939 .0945
Bias, -.0003 -~.0111 -.0038 =-.,0026 ~.0106 -.0029 -.0048 ~.0061 -.0055
S.D.Ag .0394 .0384 .0372 .0355 .0363 .0348 .0125 .0124 .0124
M.S.E. .0391 .0396 .0370 .0354 .0376 .0347 .0133 .0137 .0135
X .0169 .0183 .0175 .0169 .0187 .0174 .0179 .0182 .0182
Bias -.0031 -~.0017 ~-.0025 -.0031 =-.0013 -.0026 -.0021@ -.0018 -.0018
S.D.Ay .0218 .0216 .0209 .0211 .0218 .0207 .0071 .0069 .0069
M.S.E. .0218 .0215 .0208 .0212 .0217 .0208 .0073 .0071 .0071
Actuarial Estimate
0 .0999 ,0912 .0997 .1006 0914 .1006 .0977 .0967 .0972
Bias, -,0001 -~-.0088 -.0003 .0006 -.0086 .0006 -.0023 ~-.0033 ~.0028
S.D.Ag .0429 0417 .0411 .0387 .0393 .0386 .0136 .0135 .0137
M.S.E. .0425 0422  ,0407 .0385 .0400 .0384 .0137 .0138 .0138
1 .0203 .0210 .0208 .0203 .0216 .0207 .0212 .0213 .0214
Bias, .0003 .0010 .0008 .0003 .0016 .0007 .0012 .0013 .0014
$.D.\y .0244 ,0241 .0236 .0238 .0245 .0236 .0079 .0078 .0078
M.S.E. .0242 .0239 .0234 .0237 0244  .0235 .0079 .0078% .0078
Maximum Likelihood Estimate
A0 .1000 .0912 .0997 .1006 0914 .1006 0977 .096% .0972
Bias, .0000 -.0088 -.0003 .0006 ~.0086 .0006 =-.0023 -.0033 -.0028
S.D.Ag .0430 .0418 .0412 .0388 .0394 .0387 .0136 .0134% .0137
M.S.E. .0426 .0423 ,0408 .0386 .0401 .0385 .0137 .013¢ .0138
A .0204 .0210 .0209 .0205 .0217 .0209 .0214 .0214 .0216
Bias, .0004 .0010 .0009 .0005 .0017 .0009 .0014 .0014 .0016
S.D.Ay .0245 0242 .0237 .0239 0246 .0237 .0080 .0078 .0078
M.S.E. .0243 .0240 .0235 .0238 .0245 .0236 .0080 .0078 .0079

TL



Table 8.

Gompertz hazard function -- complete data

R=50 N;=100 R=100 N,=100 R=5- N;=1000
Wi w2 W3 Wi W2 - W3 W1 w2 W3
Conditional Proportion Retired
X0 -2.0919 -1,9953 -2.0717 «2.0694 -1.9885 -2.0571 -1.9957 -2.0505 -2,0462
Bias, -0.0919 0.0047 -0.0717 =0.0694 0.0115 -0.0571 0.0043 -0.0505 -0.0462
S.D.Ag 0.1820 0.1414 0.1584 0.1773 0.1491 0.1566 0.0806 0.0497 0.0530
M.S.E. 0.2023 0.1401 0.1724 0.1896 0.1488 0.1659 0.0799 0.0705 0.0699
Al 0.0511 0.0616 0.0470 0.0498 0.0608 0.0464 0.0502 0.0631 0.0587
Bias, -0.0189 ~0.0084 -0.0230 -0.0202 -0.0092 -0.0236 -0.0198 -0.0069 -0.0113
S.D.\y 0.0267 0.0224 0.0262 0.0272 0.0259 0.0266 0.0115 0.0079 0.0087
M.S.E. 0.0325 0.0237 0.0347 0.0338 0.0274 0.0355 0.0228 0.0104 0.0142
Actuarial Estimate
Xo -2,0616 ~1.9612 -2.0237 -2.0383 -1.9544 -2.0095 ~-1.9570 -1.9974 ~1.9923
Bias -0.0616 0.0388 -~0.0237 =0.0383 0.0456 -0.0095 0.0430 0.0026 0.0077
S.D.2g 0.1925 0.1466 0.1658 0.1862 0.1517 0.1642 0.0882 0.0543 0.0570
M.S.E. 0.2003 0.1502 0.1658 0.1892 0.1577 0.1637 0.0973 0.0538 0.0570
A 0.0633 0.0724 0.0566 0.0619 0.0719 0.0563 0.0601 0.0708 0.0665
Bias ~0.0067 0.0024 -0.0134 ~0.0081 0.0019 -0.0137 -0.0099 0.0008 -0.0035
S.D.\q 0.0285 0.0223 0.0273 0.0292 0.0258 0.0279 0.0129 0.0089 0.0096
M.S.E. 0.0290 0.0222 0.0302 0.0302 0.0257 0.0310 0.0162 0.0088 0.0101
Maximum Likelihood Estimate
Xo -2.0677 ~=1.9619 -2,0252 ~2.0445 ~1.9553 -2.0112 -1.9636 -1.9960 ~-1.9923
Bias -0.0677 0.0381 -0.0252 ~0.0445 0.0447 ~-0.0112 0.0364 0.0040 0.0077
8.D. % 0.1943 0.1461 0.1661 0.1874 0.1494 0.1644 0.0903 0.0549 0.0574
M.S.E. 0.2039 0.1496 0.1664 0.1917 0.1552 0.1640 0.0965 0.0545 0.0573
1 0.0654 0.0726 0.0580 0.0641 0.0723 0.0578 0.0619 0.0711 0.0673
Bias, ~0,0046 0.0026 ~0.0120 -0.0059 0.0023 -0.0122 -0.0081 0.0011 =0.0027
S.D.\y 0.0290 0.0216 0.0274 0.0296 0.0249 0.0280 0.0133 0.0091 0.0097
M.S.E. 0.0291 0.0215 0.0297 0.0300 0.0249 0.0304 0.0155 0.0091 0.0100
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Table 9. Gompertz hazard function -- lightly censored

R=50 N;=100

R=100 N;=100

R=50 N;=1000

Wl w2 W3 Wl w2 W3 Wl w2 W3
Conditional Proportion Retired
io -2.1238 -2.0200 -2.1039 -2.1076 -2.0242 -2,0977 -2.0561 -2.0526 ~2.0604
Bias -0.1238 -0.0200 -0.1039 ~0.1076 =0.0242 -0.0977 -0.0561 -0.0526 =-0.0604
S.D.}g 0.2468 0.1931 0.2096 0.2239 0.1763 0.1973 0.0605 0.0589 0.0599
M.S.E. 0.2739 0.1922 0.2321 0.2474 0.1771 0.2193 0.0821 0.0785 0.0846
Xl 0.0586 0.0641 0.0579 0.0604 0.0678 0.0605 0.0619 0.0635 0.0634
Bias -0.0114 -0.0059 -0.0121 -0.0096 -0.0022 -0.0095 -0.0081F1 ~-0.0065 ~-0.0066
S.D.)y 0.0594 0.0480 0.0523 0.0530 0.0425 0.0488 0.0142 0.0135 0.0138
M.S.E. 0.0599 0.0479 0.0532 0.0536 0.0423 0.0495 0.0162 0.0149 0.0152
Actuarial Estimate
Xo -2.0723 =1.9665 =2.0486 -2.0567 -1.9711 -2.0434 -2.0042 ~1.9977 =2.0059
Bias -0.0723 0.0335 -0.0486 -0,0567 0.0289 =0.0434 ~-0.0042 0.0023 =0.0059
8.D.}g 0.2581 0.2047 0.2210 0.2340 0.1868 0.2078 0.0640 0.0628 0.0637
M.S.E. 0.2655 0.2054 0.2241 0.2396 0.1881 0.2113 0.0635 0.0622 0.0633
¥ 0.0663 0.0705 0.0653 0.0686 0.0747 0.0684 0.0698 0.0709 0.0710
Bias, -0.0037 0.0005 =0.0047 ~-0.0014 0.0047 -0.0016 -0.0002 0.0009 0.0010
S.D.\y 0.0634 0.0516 0.0560 0.0566 0.0458 0.0521 0.0154 0.0147 0.0149
M.S.E. 0.0629 0.0511 -0.0556 0.0563 0.0458 0.0519 0.0152 0.0146 0.0148
Maximum Likelihood Estimate
2o -2,0715 ~1.9655 =2.0476 -2.0559 -1.9702 -2,0425 -2.0034 -1.9968 ~2.0049
Bias, -0.0715 0.0345 -0.0476 -0.0559 0.0298 ~0.0425 =0,0034 0.0032 ~-0.0049
S.D.)g 0.2588 0.2052 0.2217 0.2345 0.1872 0.2084 0.0643 0.0631 0.0639
M.S.E. 0.2660 0.2060 0.2246 0.2399 0.1886 0.2117 0.0637 0.0625 0.0634
A 0.0669 0.0706 0.0659 0.0692 0.0748 0.0690 0.0703 0.0714 0.0715
Bias, ~0.0031 0.0006 -0.0041 -0.0008 0.0048 -0.0010 0.0003 0.0014 0.0015
S.D.Ay 0.0638 0.0518 0.0563 0.0569 0.0460 0.0523 0.0155 0.0147 0.0150
M.S.E. 0.0632 0.0513 0.0559 0.0566 0.0460 0.0520 0.0153 0.0146 0.0149
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Table 10.

Gompertz hazard function -- heaviiy censored

R=50 N;=100

R=100 N;=100

R=50 N;=1000

Wl w2 w3 Wl W2 w3 Wl w2 w3
Conditional Proportion Retired
Ao -2.1874 -2.0386 -2.1585 -2.1206 02.0141 -2.1096 ~-2.0615 -2.0556 -2.0632
Bias, -0.1874 -0.0386 -0.1585 -0.1206 ~0.0141 -0.1096 -0.0615 ~0.0556 =~0.0632
S.D.)g 0.3604 0.2890 0.3038 0.3595 0.2761 0.3129 0.0936 0.0867 0.0870
M.S.E. 0.4030 0.2887 0.3400 0.3775 0.2751 0.3301 0.1112 0.1023 0.1068
A 0.1035 0.0667 0.0958 0.0724 0.0504 0.0707 0.0625 0.0620 0.0635
Bias 0.0335 =0.0033 0.0258 ° 0.0024 -0.0196 0.0007 -0.0075 -0.0080 -0.0065
S.D.\y 0.1673 0.1326 0.1467 0.1706 0.1352 0.1543 0.0476 0.0436 0.0448
M.S.E. 0.1690 0.1313 0.1475 0.1698 0.1359 0.1535 0.0477 0.0439 0.0448
Actuarial Estimate
Xo -2,1469 -1.9935 -~2.1123 -2.0786 -1.9681 -~2.0626 -2.0205 -2.0092 ~-2.0172
Bias_ ~0.1469 0.0065 ~0.1123 -0.0786 0.0319 -0.0626 -0.0205 -0.0092 -0.0172
S.D.}p 0.3700 0.3029 0.3152 0.3702 0.2895 0.3253 0.0974 0.0910 0.0912
M.S.E. 0.3946 0.2999 0.3316 0.3766 0.2898 0.3297 0.0986 0.0906 0.0919
A 0.1193 0.0801 0.1098 0.0872 0.0629 0.0838 0.0777 0.0750 0.0769
Bias 0.0493 0.0101 0.0398 0.0172 -0.0071 0.0138 0.0077 0.0050 0.0069
S.D.)\y 0.1734 0.1404 0.1532 0.1774 0.1429 0.1616 0.0502 0.0463 0.0474
M.S.E. 0.1786 0.1394 0.1568 0.1773 0.1424 0.1614 0.0503 0.0461 0.0474
Maximum Likelihood Estimate
Xo -2.1462 ~-1.9930 -2.1114 -2.0779 ~-1.9674 -2.0617 -2.0199 -2.0085 -2.0164
Bias ~0.1462 0.0070 -0.1114 -0.0779 -0.0326 -0.0617 ~-0.0199 -0.0085 -0.0164
S.D.Ag 0.3703 0.3035 0.3157 0.3705 0.2901 0.3258 0.0975 0.0912 0.0914
M.S.E. 0.3947 0.3005 0.3318 0.3768 0.2905 0.3300 0.0986 0.0907 0.0920
il 0.1200 0.0807 0.1104 0.0879 0.0634 0.0844 0.0783 0.0756 0.0775
Bias, 0.0500 0.0107 0.0404 0.0179 -0.0066 0.0144 0.0083 0.0056 0.0075
S.D.\; 0.1737 0.1409 0.1535 0.1777 0.1433 0.1620 0.0503 0.0464 0.0476
M.S.E. 0.1791 0.1399 0.1572 0.1777 0.1427 0.1618 0.0505 0.0463 0.0477
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Table 11.

Weibull hazard function -- complefe data

R=50 N;=100

R=100 N;=100

R=50 N;=1000

W3

W1 w2 W3 Wl W2 Wi w2 W3
Conditional Proportion Retired
Ao 0.0827 0.0869 0.0782 0.0800 0.0845 0.0770 0.0800 0.0773 0.0753
Bias 0.0027 0.0069 ~-0.0018 0.0 0.0045 =-0.0030 0.0 -0.0027 -0.0047
S.D.2g 0.0344 0.0381 0.0239 0.0279 0.0296 0.0216 0.0095 0.0056 0.0068
M.S.E. 0.0342 0.0383 0.0237 0.0278 0.0298 0.0217 0.0094 0.0062 0.0082
A 1.3999 1.4526 1.4324 1.4081 1.4562 1.4371 1.4193 1.4596 1.4675
Bias, -0.1001 ~-0.0474 -0.0676 -0.0919 ~-0.0438 -0.0629 ~0.0807 =-0.0404 -0.0325
S.D.)\y 0.1566 0.1460 0.1364 0.1406 0.1272 0.1335 0.0645 0.0340 0.0429
M.S.E. 0.1845 0.1521 0.1510 0.1674 0.1339 0.1470 0.1029 0.0526 0.0535
Actuarial Estimate
Ao 0.0837 0.0854 0.0801 0.0808 0.0834 0.0789 0.0812 0.0785 0.0776
Bias 0.0037 0.0054 0.0001 0.0008 0.0034 -0.0011 0.0012 -0.0015 -0.0024
S.D.}p 0.0345 0.0301 0.0242 0.0280 0.0244 0.0222 0.0099 0.0061 0.0072
M.S.E. 0.0344 0.0303 0.0240 0.0279 0.0245 0.0221 0.0099 0.0062 0.0075
\ 1.4590 1.5112 1.4801 1.4677 . 1.5160 1.4847 1.4755 1.5099 1.5102
Bias, ~-0.0410 0.0112 -0.0199 -0.0323 0.0160 -0.0153 ~-0.0245 0.0099 0.0102
S.D.Ay 0.1612 0.1.314 0.1366 0.1451 0.1192 0.1355 0.0692 0.0358 0.0441
M.S.E. 0.1648 0.1306 0.1367 0.1479 0.1197 0.1357 0.0728 0.0368 0.0448
Maximum Likelihood Estimate
Xo 0.0829 0.0848 0.0797 0.0802 0.0830 0.0786 0.0806 0.0784 0.0776
Bias 0.0029 0.0048 -0.0003 0.0002 0.0030 -0.0014 0.0006 -0.0016 ~-0.0024
S5.D.Ag 0.0333 0.0270 0.0237 0.0273 0.0225 0.0218 0.0098 0.0061 0.0072
M.S.E. 0.0331 0.0272 0.0235 0.0272 0.0226 0.0217 0.0097 0.0062 0.0075
Xl 1.4685 1.5124 1.4859 1.4772 1.5174 1.4903 1.4839 1.5134 1.5137
Bias, ~0.0315 0.0124 -0.0141 =-0.0228 0.0174 -0.0097 -0.0161 0.0134 0.0137
S.D.); 0.1617 0.1235 0.1358 0.1457 0.1139 0.1350 0.0698 0.0360 0.0441
M.S.E. 0.1631 0.1229 0.1352 0.1468 0.1147 0.1347 0.0709 0.0381 0.0458
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Table 12.

Weibull hazard function ~=- lightly censored

R=50 N =100 R=100 N =100 R=50 N =1000
Wi w2 W3 Wl w2 W3 Wl W2 w3
Conditional Proportion Retired
Ao 0.0745 0.0824 0.0733 0.0744 0.0811 0.0735 0.0742 0.0768 0.0745
Bias, -0.0055 0.0024 -0.0067 -0.0056 0.0011 -0.0065 ~0.0058 =-0.0032 ~0.0055
S.D.Ap 0.0220 0.0221 0.0184 0.0217 0.0206 0.0195 0.0079 0.0060 0.0070
M.S.E. 0.0225 0.0220 0.0194 0.0223 0.0205 0.0205 0.0097 0.0067 0.0088
1 1.4710 1.4623 1.4851 1.4699 1.4699 1.4845 1.4774 1.4642 1.4787
Bias, -0.0290 -0.0377 -0.0149 -0.0301 -0.0301 -0.0155 ~0.0226 -0.0358 ~0.0213
S.D.\y 0.1458 0.1300 0.1370 0.1575 0.1326 0.1504 0.0507 0.0374 0.0475
M.S.E. 0.1472 0.1341 0.1364 0.1596 0.1353 0.1504 0.0550 0.0515 0.0516
Actual Estimate
Ao 0.0774 0.0848 0.0760 0.0772 0.0833 0.0761 0.0769 0.0789 0.0772
Bias, -0,0026 0.0048 -0.0040 -0.0028 0.0033 -0.0039 ~-0.0031 -0.0011 ~0.0028
S.D.)Agp 0.0234 0.0231 0.0195 0.0230 0.0218 0.0207 0.0082 0.0065 0.0074
M.S.E. 0.0233 0.0234 0.0197 0.0231 0.0219 0.0210 0.0087 0.0065 0.0078
A 1.5090 1.5024 1.5238 1.5084 1.5113 1.5235 1.5164 1.5070 1.5172
Bias, 0.0090 0.0024 0.0238 0.0084 0.0113 0.0235 0.0164 0.0070 0.0172
S.D.2y 0.1506 0.1355 0.1415 0.1642 0.1412 0.1563 0.0518 0.0400 0.0485
M.S.E. 0.1494 0.1342 0.1421 0.1636 0.1409 0.0573 0.0538 0.0402 0.0510
Maximum Likelihood Estimate
Ao 0.0774 0.0847 0.0760 0.0772 0.0833 0.0761 0.0769 0.0788 0.0772
Bias, -0.0026 0.0047 =0.0040 ~-0.0028 0.0033 -0.0039 -0.0031 -0.0012 -0.0028
S.D.}g 0.0234 0.0230 0.0195 0.0230 0.0218 0.0207 0.0082 0.0065 0.0074
M.S.E. 0.0233 0.0232 0.0197 0.0231 0.0219 0.0210 0.0087 0.0065 0.0078
b3y 1.5116 1.5039 1.5264 1.5111 1.5130 1.5261 1.5188 1.5098 1.5195
Bias, 0.0116 0.0039 0.0264 0.0111 0.0130 0.0261 0.0188 0.0098 0.0195
S.D.}2y 0.1510 0.1349 0.1419 0.1648 0.1414 0.1568 0.0519 0.0402 0.0486
M.S.E. 0.1499 0.1336 0.1429 0.1643 0.1413 0.1582 0.0547 0.0410 0.0519
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Table 13.

Weibull hazard function =-- heavil& censored

R=50 N;=100

R=100 N;=100

R=50 N,=1000

Wl w2 W3 Wl w2 W3 Wl w2 w3
Conditional Proportion Retired
Xo 0.0730 0.0813 0.0724 0.0732 0.0788 0.0725 0.0739 0.0751 0.0740
Bias -0.0070 0.0013 -0.0076 -0.0068 =0.0012 ~0.0075 ~0.0061 -0.0049 =0.0060
S.D.)g 0.0217 0.0231 0.0199 0.0221 0.0224 0.0210 0.0081 0.0067 0.0075
M.S.E. 0.0226 0.0229 0.0211 0.0230 0.0223 0.0222 0.0101 0.0082 0.0095
Xl 1.5160 1.4645 1.5221 1.5191 1.4976 1.5276 1.4984 1.4877 1.4977
Blas 0.0160 -0.0355 0.0221 0.0191 -0.0024 0.0276 -0.0016 ~-0.0123 =-0.0023
$.D.\y 0.2489 0.2234 0.2377 0.2385 0.2171 0.2316 0.0762 0.0625 0.0726
M.S.E. 0.2469 0.2240 0.2363 0.2381 0.2160 0.2321 0.0755 0.0631 0.0719
Actuarial Estimate
Xo 0.0758 0.0839 0.0752 0.0761 0.0814 0.0753 0.0767 0.0778 0.0768
Bias -0.0042 0.0039 -0.0048 -0.0039 0.0014 -0.0047 =-0.0033 -0.0022 -0.0032
S.D.Ag 0.0227 0.0242 0.0209 0.0233 0.0237 0.0222 0.0085 0.0072 0.0079
M.S.E. 0.0229 0.0243 0.0212 0.0235 0.0236 0.0226 0.0090 0.0075 0.0084
Xl 1.5503 1.5035 1.5571 1.5538 1.5363 1.5632 1.5320 1.5235 1.5317
Blas, 0.0503 0.0035 0.0571 0.0538 0.0363 0.0632 0.0320 0.0235 0.0317
S.D.2y 0.2582 0.2379 0.2481 0.2462 0.2297 0.2403 0.0773 0.0655 0.0739
M.S.E. 0.2605 0.2355 0.2522 0.2508 0.2314 0.2473 0.0829 0.0690 0.0797
Maximum Likelihood Estimate
Xo 0.0758 0.0838 0.0752 0.0761 0.0814 0.0753 0.0767 0.0778 0.0768
Bias -0.0042 0.0038 -0.0048 -~0.0039 0.0014 -0.0047 -0.0033 -0.0022 ~0.0032
S.D.2p 0.0227 0.0242 0.0210 0.0233 0.0237 0.0222 0.0085 0.0072 0.0079
M.S.E. 0.0229 0.0243 0.0213 0.0235 0.0236 0.0226 0.0090 0.0075 0.0084
1 1.5518 1.5055 1.5587 1.5554 1.5381 1.5649 1.5334 1.5252 1.5331
Bias, 0.0518 0.0055 0.0587 0.0554 0.0381 0.0649 0.0334 0.0252 0.0331
S.D.\, 0.2589 0.2393 0.2490 0.2467 0.2307 0.2409 0.0774 0.0657 0.0740
M.S.E. 0.2615 0.2370 0.2534 0.2516 0.2327 0.2483 0.0836 0.0698 0.0804

LL
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containing either 100 or 1000 units per vintage. The number of vintages
included in a study of 100 units per vintage was increased from 50 to 100
in order to determine whether or not 50 replications was sufficient to
estimate the underlying population parameters. Thus, the notation R = 50,
N; = 100 describes an analysis of 50 vintages (replications) containing
100 units per vintage.

It was noted earlier that the vector of observed hazard rates Y was
weighted by either 1.0 (i.e., no weighting), 1/6;;(ik), or Nkhk to obtain
a weighted least squares estimate of thé parameters of the underlying
hazard function. The estimates obtained from each of these weights are
identified in Tables 2 thru 13 as W1, W2, W3; where W1 is an unweighted
estimate, W2 is weighting by the inverse of the estimated variance of the
hazard rate, and W3 is weighting by the number of units entering an age-
interval times gﬁe width of the interval

The rows of Tables 2 thru 13 are divided into three major sectiomns
which identify the parameter estimates and related statistics associated
with (1) the conditional proportion retired, (2) the actuarial estimate,
and (3) the maximum likelihood estimate of the hazard rate for each age-
interval. The statistics computed for a given model, estimator, vintage

size, number of replications, and weighting are defined as follows:

R
3 = 1 X s -
Aj RZ)‘J:{’ j=0,1
i=1
Bias = Aj - AJ : i=0,1
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R -~
- 3 )2
2 (g5 = 29

5.D.a; = i=1 5=0,1
R-1

M.S.E. = ng 1 (s.n.:tj)2 + Bias? ; j=0, 1.

In words, Xj is approximately the mean or average of the probability

distribution of the estimator ij ( = 0, 1). The Bias is the difference
between the mean of the probability distribution of the estimator and the
true value of Aj ~~ the population parameter of the underlying distribution.
The standard deviation, S.D.i , 1s calculated as the square root of the

sum of the deviations squared divided by the number of vintages less one.
It should be noted that the mean square error (M.S.E.) is usually defined

" as the sum of the population variance and the bias squared. The statistic
shown in Tables 2 thru 13 is the square root of this quantity or, more
properly defined, the root mean square error.

The results shown in Table 2 were derived from a constant hazard
function which has a probability density function f£(t) and a survivorship
function S(t) that are negative exponential. The simplicity of this model
(i.e., a single parameter) offers the possibility of a reasonably good
analysis of the statistical properties of the weighted and unweighted
estimates of the hazard rate. The consistency of the results also suggests

that the exponential distribution is well-suited to a comparative analysis

of the properties of the estimators.
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It is evident from Table 2 thét the maximum likelihood estimate,
weighted by the number of units entering an age-interval, consistently

yields an estimate of A, that is closer to the true value (i.e., 0.20)

0
than either the conditional proportion retired or the actuarial estimate.
The reasonableness of this result can be verified by calculating the
theoretical bias of each estimator from the equations developedAfor the
expected value of ik' The magnitude of the theoretical bias should be
comparable to the unweighted bias shown in Table 2.

The theoretical bias of the conditional proportion retired can be
calculated froﬁ Equation 18 where, under a constant hazard function, it can
be shown that

ohy

= (1-e )

and

-~ -Q.
E[, ] %—k- a-e %

where a = A(t). Thus, when a = 0.20 and hk =1,

-0.20
e

E[ik] = 1- 0.1813

and the theoretical bias becomes

Blas = E[]- A

= 0.1813 - 0.20

= -0.0187.
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Similarly, the theoretical bias of the actuarial estimate can be calcu-

lated from Equation 20 where, under a constant hazard function, it can be

shown that
qk = (1 - e uhk)s
-at
Q-¢) = e k
and
- Q- e-ahk) e-uhk(l - e-ahk)
E[Ak] = -ahk 1 + _ahk
hil-%1-e O] 4[l-%Q-e ]2

* {ahk —ohy [ i"“‘k.l

Nje ‘JJ
where a = A(t). Thus, when a = 0.20 and hk =1,

E[ik] = 0.2083

(31)

which is obtained by evaluating only those terms of Equation 31 which do

not depend on Nj, the vintage size. The theoretical bias then becomes

Bias = E[A] - &

= 0.2083 - 0.20

= 0.0083.
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The calculation of the bias of the maximum likelihood estimate is
rather complicated since, under a constant hazard function, an evaluation
of Equation 28 yields an expression of the form

]

E[ik] = a.;._];_"_?:_. : (32)

-at.
2N1e ktl

vhere the second term of the right-hand side of Equation 32 is the bias.
Thus, the bias of the maximum likelihood estimate is a function of both N;,

h age-interval. An

the vintage size, and t41? the end point of the kt
example of the bias was calculated, however, by evaluating Equation 32 for
a = 0.20, N; = 100, and tk&l = 4. The resulting bias is 0.002.

Thus, the theoretical bias of the maximum likelihood estimate is less
than the bias of either the conditional proportion retired or the actuarial
estimate, which is consistent with the results shown in Table 2. This is
.not totally surprising, however, since it can be shown that the maximum
1likelihood estimate is asymptotically unbiased for large values of N;. It
should also be noted that the maximum likelihood estimate of lk (i.e.,
Equation 25) was developed under the assumption that a hazard function is
constant within each age-interval.l The exponential distribution is con-
sistent with this assumption and should, therefore, improve the relative
bias of the maximum likelihood estimate.

Although an unbiased estimator is generally preferred over a biased

estimator, unbiasedness is not necessarily an indispensable property of a

"good" estimator. If the amount of bias is small compared with the

1Supra, P. 52.
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standard deviation of the estimator, the estimator though biased may be
entirely satisfactory. It is important, therefore, to also consider the
standard deviation of the estimates obtained from each estimate of the
hazard rate.

It is evident from Table 2 that the conditional proportion retired,
weighted by the number of units entering an age-interval, consistently
yields a smaller standard deviation of io than either the actuarial esti-
mate or the maximum likelihood estimate. This result is not totally
satisfying, however, since one is now confronted with the problem of
choosing between an estimator that yields a relatively small bias (i.e.,
the maximum likelihood estimate) and an estimator that yields a relatively
small standard deviation (i.e., the conditional proportion retired). It
is helpful, therefore, to combine the bias and standard deviation into a
single statistic which provides a joint measurement of the two properties.
The root mean square error has been used for this purpose.

The analysis shown in Table 2 indicates that the actuarial estimate,
weighted by the number of units entering arn age-interval, consistently
yields a smaller root mean square error than either the conditional pro-
portion retired or the maximum likelihood estimate.

Thus, it can be concluded from Table 2 that each of the three esti-
mators exhibits certain characteristics of a "good" estimator and the
choice of which estimator is "best" depends on which statistical property
is considered most important. If the underlying hazard function is known
to be a constant and a small bias is crucial, then the maximum likelihood
estimate should be selected. On the other hand, if a small standard

deviation is crucial, then the conditional proportion retired should be
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selected. If the smallest combined standard deviation and bias is
important, then the actuarial estimate should be selected. In all cases,
however, weighting by the number of units entering an age-interval is
better than weighting by either the inverse of the estimated variance of
the hazard rate or an unweighted estimate.

The conclusions drawn from Table 2 are gemerally applicable to Tables
3 and 4 which provide an analysis of two levels of censoring when the under-
lying hazard function is known to be a constant. As the data become more
censored, however, the bias of the maximum likelihood estimate tends to
exceed the bias of the actuarial estimate which is less than the bias of
the conditional proportion retired. The conditional proportion retired
appears to yield the smallest standard deviation regardless of the degree
of censoring.

The results shown in Table 5 were derived from a linear hazard
_function which necessitates the estimation of two parameters. This
slightly more complicated model also contradicts the assumption of a
constant hazard function within each age-interval which was postulated to
develop the maximum likelihood estimator. It is not surprising, therefore,
that the maximum likelihcod estimate, weighted by the number of units
entering an age-interval, consistently yields a larger bias than the
actuarial estimate and a2 smaller bias than the conditional proportion
retired. This result appears to hold for estimates of both 1, and 11.

It is also evident from Table 5 that the conditional proportion
retired, weighted by the number of units entering an age-interval, con-
sistently yields a smaller estimate of the standard deviation of both io

and 1A; than either the actuarial estimate or the maximum 1ikelihood
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estimate. It is disconcerting to note, however, that the conditional
proportion retired, weighted by the number of units entering an age-
interval, consistently yields the smallest root mean square error of in
while the actuarial estimate, weighted by the number of units entering an
age-interval, consistently yields the smallest root mean square error of
il. Thus, the root mean square error offers little guidance in selecting
the "best"” estimator for the linear model.

Unlike the constant hazard function, the linear model tends to show a
disproportionate change in the bias and standard deviation when the number
of replications is increased from 50 to 100. This suggests that the number
of vintages included in the study may be insufficient to estimate the
population parameters. However, an additional analysis of the linear model
whick included 500 replications showed no significant change in the bias
and standard deviation from the results obtained using 100 replicatioms.
_Therefore, it is reasonable to conclude that 100 replications is sufficient
to estimate the population parameters of the linear model.

The results shown in Tables 6 and 7 suggest that censoring a linear
model has a greater effect on the parameter estimates than censoring a
constant hazard function. As the data become more censored, the bias,
standard deviation, and root mean square error for the actuarial estimate
approach the value of the corresponding statistics for the maximum likeli-
hood estimate. This result only holds for estimates of Ay. Furthermore,
as the data become more censored, the conditional proportion retired,
weighted by the number of units entering an age-interval, consistently
yields the smallest root mean square error for both io and il.

The results shown in Table 8 were derived from a Gompertz hazard
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function which also necessitates the estimation of two parameters. The
complexity of this model appears to introduce several inconsistencies that
were not observed with the previous models. For example, the smallest
bilas, standard deviation, and mean square error all occur when the esti-
mates are weighted by the inverse of the estimated variance of the hazard
rate. The previous models showed the number of units entering an age-
interval to be the best weighting. The Gompertz model also yields erratic
results as the vintage size is increased from 100 to 1000.

Progressive censoring of the Gompertz model does, however, introduce
some consistency in the estimates. The results shown in Tables 9 and 10
suggest that the conditional proportion retired, weighted by the inverse of
the estimated variance of the hazard rate, consistently yields the smallest
standard deviation and mean standard error for both io and il. There is
not, however, an estimator that consistently yields the smallest bias when
_the model is censored.

The results shown in Table 11 were derived from a two-parameter
Weibull hazard function. There are few, if any, consistencies derived from
this model. The smallest bias, standard deviation, and root mean square
error are scattered among the estimators as well as among the three methods
of weighting. As the data become more censored, however, the results tend
to show some regularity. Tables 12 and 13 show that the conditional pro-
portion retired, weighted by either the number of units entering an age-
interval or the inverse of the estimated variance of the hazard rate,
consistently yields the smallest bias, standard deviation, and root mean

square error for both io and il' It is interesting to note that a censored

Weibull model also forces the actuarial and maximum likelihood estimates of
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A9 to the same value. This tendency was observed in the linear model but
did not occur with a Gompertz hazard function.

The results summarized in Tables 2 thru 13 suggest that the bias of
the maximum likelihood estimate tends to increase as the underlying hazard
function departs from the assumption of a constant hazard rate within each
age-interval. It would seem, therefore, that the bias of the maximum
likelihood estimate should improve as the average service life increases
and the width of an age-interval becomes small in relation to the maximum
life of a property unit. This theory was tested with a linear hazard
function containing population parameters of Ay = 0.1 and A, = 0.01. The
average service life of this model is approximately 12.5 years which is
over twice the average service life of the model used in Table 5. The
results of this experireui showed no significant improvement in the bias of

the maximum likelihood estimate.
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SUMMARY AND CONCLUSIONS

The procedure used to estimate the parameters of a hazard function in
life studies of industrial property has traditionally relied on the condi-
tional proportion retired (or retirement fatio) as an estimate of the
hazard rate for each age-interval. This so-called "actuarial method" can
be viewed as a two-stage procedure in which estimates of the hazard rate
are obtained from an observed life table and then used as the dependent
variable in a weighted regression analysis to estimate the parameters of an
assumed hazard function.

In this study, three different estimates of the hazard rate were
developed by nonparametric methods and compared in a Monte Carlo study to
determine which estimator and method of weighting is best for depreciation
applications. The major conclusions drawn from this investigation are as
follows:

(1) The conditional proportion retired, the actuarial estimate,
and the maximum likelihood estimate each possess different
attributes of a “good" estimator. However, it is difficult
to say which attribute is the most important or which esti-
mator is best for depreclation applicationms.

(11) The conditional proportion retired tends to yield the

smallest standard deviation of the estimated parameters
regardless of the form of the underlying hazard function.

(ii1) The actuarial estimate tends to yield the smallest root

mean square error of the estimated parameters when the

sample size is large and the data are uncensored.
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(iv) The maximum likelihood estimate tends to yield the smallest
bias of the estimated parameters when the form of the under-
lying hazard function does not significantly violate the
assumption of a constant hazard rate within each age-interval.

(v) The conditional proportion retired tends to yield the smallest
bias, standard deviation, and root mean square error of the
estimated parameters when the data are heavily censored.

(vi) The best method of weighting appears to depend on the form

of the underlying hazard function. Weighting by the number
of units entering an age-interval times the width of the
interval is best when the form of the underlying hazard
function is a constant or a polynomial of the first degree.
Weighting by the inverse of the estimated variance of the
hazard rate is best when the form of the underlying hazard
function is a Weibull distribution. The best method of
welghting is indeterminate when the form of the underlying
hazard function is a Gompertz distribution.

The conclusions drawn from this study raise a number of interesting
questions that may warrant further investigation. For example, it was
found that the maximum likelihood estimator provides a reasonably good
estimate of the population parameters when the form of the underlying
hazard function does not significantly violate the assumption of a constant
hazard rate within each age-interval. It is possible that this assumption
could be met if the age-intervals are small in relation to the average
service life of the units installed at age zero. It would be interesting,

therefore, to repeat this investigation for average service lives in the
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range of 20 to 40 years and observe the statistical properties of each
estimator and method of weighting as a function of the average service
1life.

It was also found that the estimators are reasonably consistent when
the form of the underlying hazard function is a constant or a polynomial of
the first degree. It would be interesting to gemeralize this model to
include quadratic and higher terms. Thus, one might consider a model of

the form

ACE) = Ag+ At +Axt2+. .. +Amtm

which is commonly used in life studies of industrial property when the form
of the underlying hazard function is assumed to follow the Iowa-type sur-
vival functions. It may be that subsequent fitting of the smoothed survi-
.vorship function to the Iowa curves would introduce a different criterion
for measuring the statistical properties of the estimators. In this comn-
nection, an attempt was made to fit first, second, and third degree poly-
nomials to the three estimates of the hazard rate followed by fitting the
smoothed survivorship function to the Iowa curves. The results suggested
that the actuarial estimate and the maximum likelihood estimate may yield
a shorter average service life than the conditional proportion retired.
Finally, it should be emphasized that the end result of life analysis
is the estimation of a proper depreciation accrual rate based upon
engineering judgement of events likely to occur in the future. This
suggests that one should not go too far in attempts to polish statistical

methods; the effort may exceed the usefulness of the results.
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APPENDIX A: DERIVATION OF THE h-SYSTEM OF SURVIVAL FUNCTIONS

Consider the fumction

o(t) = -l—~exp{-tzl2}; —o<t<w (33)
Y2
which is the well-known "normal" probability density fumction (p.d.f.)
of a random variable T with mean u = O and variance o2 = 1.0. Clearly,
since ¢(t) is defined over a range which includes values of t approaching
-, ¢(t) cannot be used to describe the probability distribution of the -
service life of a unit of property.

It is a simple matter, however, to construct a linear transformation
of t and truncate a portion of ¢(t) such that the transformed variable
describes the service life of an asset and the portion of ¢(t) remaining
after truncation satisfies the properties of a density function. This
. construction can be visualized from Figure 1 which shows ¢(t) truncated

at some arbitrary distance h from t = 0.

¢(t)f

>
t

e— h —f
0
Figure 1. A truncated standard normal density function. -
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This point of truncation can be related to the service life of an asset by
letting t = -h represent the point in time at which a unit of property is

installed. By definition, t = -h is taken to be age zero. Thus,

T' = T + h can be defined as a new random variable with a p.d.f. given by

the portion of ¢(t) remaining after truncation. The mean or expected

value of T' is easily obtained by letting

¢(-h) = f $(t)dt (34)
-h -

which is simply the area under the portion of ¢(t) remaining after trun-
cation, and calculating the first moment of T' about t = -h. Thus, using

Kimball's (42) notation for the expected value of T', we obtain

f £ p(t)dt f (c+h)¢(t)de
~h -h

E[T'] = w = =

f é(t)dt ¢(-h)

-h

f to(t)de + hf d(t)dt
-h ~h

¢(-h)

f té(t)dt + ho(-h)
= ~h . (35)

3(~h)
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Now, using Equation 33 we can write

1
té(t)dt = — f t exp{-t2/2}dt
.[h V21 J -h

which is easily evaluated by letting
z = t2/2, dz = tdt

and noting that z = h?/2 when t = -h. Thus,

f te(t)dt = L exp{-z}dz
-h 27 J h2/2

1 2
= — exp{-h</2}
V27

= ¢(-h).

Using this result with Equation 35 we obtain for the mean of the truncated

distribution

. $CGh) + heé(=h) _ ¢(-h)
w 3(¢-h) o(-h) + h.

The location of w in relation to t = 0 can be visualized from Figure

2 which also shows the location of w in terms of a new random variable

T' /w.
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()4

t
e h ———p
0
('R 1
- v G
! 1.0 t'/w

Figure 2. Relationship between w and various
transformations of t.

Our motivation for constructin

that the mean or expected value of T'/w is 1.0. In other words,

t' 1 .
f.hT ¢(t)dt ;-[-h t'o(t)dt

E[T'/w] = ~ = ~
f $(t)dt f ¢(t)dt
-h ~h
= iw)
= 1.0

which is precisely the result we would obtain if t'/w was taken to repre-

sent the service life of an asset divided by its life expectancy at age
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zero. This relationship can be expressed in terms of t by letting x
represent the service life of an asset (i.e., the age of an asset when it
is retired from service) and L represent its life expectancy at age zero

(i.e., average service life). Then, by defiritionm,

£ _ x
w L
from which it follows that
tth _ x
w L
and
t = w(x/L) - h. (37

Now, from our previous use of Equation 33 and 34 it should be clear

that the p.d.f. of T for ¢$(t) truncated at t = -h can be written as

¢(t)

f(t) = 2 ° “h <t <= (38)

From Equation 38 it follows that the probability Pr[T > t], which we

denote by S(t), is given by

t @
S(t) = Pr[jT>t] = 1 -f f(s)ds =f f(s)ds
~h t

-1 = &) . - ®
Q(-h) ft ¢(S)d8 Q("h) ] h f t < . (39)
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Equation 39 is, of course, the probability statement used in Equation
9 to define a survivorship function. We can, therefore, use Equation 37 as
an expression for t and write the probability that a unit of property

survives (i.e., remains in service) beyond age x as

S(x) = ﬂw%{_%—h)-; 0<x<e. (40)

Thus, Equation 40 defines a two parameter distribution which describes the
h-System survivorship function. The general shape of this function for
various values of h can be visualized from Figure 3, which has been

reproduced from Kimball (42).

N_20

*’1}\~
|\

T T I\

° 0 L) 15Q 200 F=) 300
AGE AS PER CENT OF SERVICE LIFE

PER CENT SURVIVING

////

Figure 3. h-System survivorship functions.

The relationship between a retirement frequency function £(x) and a

survivorship function S(x) is given by Equation 8 and 9, i.e.,
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£(x) = -dS (x)

which, for the h-~System becomes

-d¢(wx/L - h)
¢(-h)dx

f(x) =

wo (wx/L - h)
Lo(-h)

(41)

The general shape of the function given by Equation 41 for various
values of h is illustrated in Figure 4, which has also been reproduced

from Kimball (42).

G
N,

/

© RATC OF RETIAEMENT °
&

° S0 w0 .30 200 230 300
AGE AS PROPORTION OF AVERAGE SERVICE LIFE

Figure 4. h-System retirement frequency functionms.
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Thus, a life table for the h-System can be generated from Equation 41

X2
w;l. ¢ (wx/L - h)dx
X1

Lé(-h)

by evaluating

for each age-interval where x; and x, denote age at the beginning and end
of a given interval. This calculation has been computerized (61) using
Simpson's Rule to evaluate the integral and a table of the normal proba-

bility function to obtain ¢(-h).
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APPENDIX B: PROGRAM LISTING OF THE ACTUARIAL METHOD OF LIFE ANALYSIS
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powes -

L
*
*
L J
*

Lo gl 12 2222

ACTUARIAL METHOD OF LIFE ANALYSIS
WRITTEN BY A,D. KENNEDY 7/70

TEXAS MEDICAL CENTER

REVISED BY R.E. WHITE 12776

&
s
REVISED BY A.De KENNEDY 10/70 .
*
]
NORTHERN STATES PONER COMPANY *

| ] tZ 22T 122 222 2t 22

CARD INPUT FORMAT - TwO TYPES OF DATA CARDS ARE REQUIRED FOR
EACK SET OF RETIREMENT DATA. ANY NUMBER OF ANALYSES MAY BE
RUN FOR EACH SET OF DATA AND ANY NUMBER OF SETS OF DATA ARE

ALLOWABLE.

(1) ANALYSIS INFORMAT
CCe 1-8 ACNTND
CC. 61-63 JMAX
CCe 66~T74 XENT
¢C. 77 METHOO

ION

CARD .

A UNIQUE 8-CHARACTER ALPHAMERIC NARE
OR NUMBER ASSIGNED TO EACH DIFFERENT
SET OF RETIREMENT DATA, (AB).

NUMBER OF AGE-INTERVALS, O LT. JMAX
LE. 100, (I3).

NUMBER OF UNITS ENTERING THE INIL-
TIAL AGE-INTERVAL, (F9.0).

METHOD USED TO ESTIMATE HAZARD RATE.
1 = CONDITIONAL PROPORTION RETIRED.
2 ~ ACTUARIAL ESTIMATE.

3 « MAXIMUM LIKELIHOCD ESTIMATE.

{23 INTERVAL DATA CARD - A SET OF INTERVAL DATA CARDS FOLLOWS
THE ANALYSIS INFORMATION CARD FOR THE FIRST ANALYSIS OF
EACH SET OF RETIREMENT DATA. THE PROGRAM REGIRES ORE
INTERVAL DATA CARD FOR EACH AGE INTERVAL (I.E., *JMAX?®

ARE REQUIRED}.

CC. 1i-19 TINTV(I) — LOWER LIM{T OF THE I-TH TIME
INTERVALs TINYVII) GE. Oy Fi9.2])s

CC. 22-30 XOI(I}

NUMBER RETIRED IN THE I-T4 AGE-
INTERVALy XDI(I) GE.O»s (F9.0).

THE ELEMENTS IN COMMON STORAGE ARE DEFINED AS FOLLOMS:

NINT
TINTY
TMID
THID
XNI
X01
HAZD
VHAZD

NUMBER OF AGE-INTERVALS MINUS ONE

INITIAL AGE-INTERVAL VALUES

AGE-INTERVAL MID-POINTS

AGE-INTERVAL WIDTHS

NUMBER EXPOSED IN EACH AGE-~INTERVAL

NUMBER RETIRED IN EACH AGE-INTERVAL

HAZARD RATE IN EACH AGE-INTERVAL

VARIANCE OF HAZARD RATE IN EACH AGE-INTVERVAL

DATA SET REFERENCE NUMBERS ARE IDENTIFIED AS FOLLOWS.

IN ~ CARD READER.

LINE -~ LINE PRINTER.
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NA IN PROGRAM

COMMON NINT, TINTV(100),THID(200) ¢ THIOCL00) ¢XNI€1000+X0I(100),
. HAZOI 100) ¢ VHAZOL 100) «BUFF6(100+36)

OIMENSION CLAMO( 49309 VLANO! 693) »SELANO{4+3) sCLANL(3+3+3),
. SELAME{3,3) yPARBUFLT¢12) ¢ALABL48) yNUNIS) oFLNBUF(443),
. HAZBUF{100912)9P(100012) ¢ SURBUF(100012) oPRDBUF (1004120
. CSQ{4),PCSQ(4)sNUMPLI3) ¢ SURCUNI100) +DENI100)

EQUIVALENCE (BUFF6( 1¢1),HAZBUF(1,+1)) +8BUFF6(1+213)+:SURBUF(Ls1))

. (BUFF&{ 1525) oPRDBUF(1,1))

REAL®8 ACNTNO,BCNTNO

REAL®4 DESCR(20)

DATA NUM/ 1920304/

DATA NUMPL/2¢3,4/

DATA IN/5/, LINE/LO/, IGDEL/8/s 1GDER2/7/

DATA ALAB/&HLAMB ¢ 4HDA-0,y 4H o4H ’
SHVAR ( o 4HLAMB ¢ 4HDA~0 9 6HH)
SHSTSE ¢ 4HRROR ¢ 4H( LAM( 4H=-0)
SHLAMB ¢ 4HDA= 1 4H '&H
SHVAR( ¢ 4HLAMB o 4HDA =1 o 4H)
HHST oE 9 4HRROR o 4HILAM6H~-1)
SHCOV( ¢ 4HLAM= 9 4HO o LA g 4HM=1) o
SHLN=L ¢ 4HIKEL ¢ 4HIHOO0 ¢ 6HD /

INPUT ANALYSIS DESCRIPTION CARD

READUIN¢ 2409 END=530) ACNTNO,(OESCREID 9lml 912) 9 JHAX oXENT ¢ METHOD
TEST FOR NEM PLANT ACCOUNT

IF(ACNTNO.EQ.8CNTNOS GO TO S0
BCNTNO = ACNTND

INPUT INTERVAL DATA CARD
READ(IN,250) (TINTVIZ)s XDICI)e Is] o JMAX)
COMPUTE SURVIVORS ENTERING EACH AGE-INTERVAL
XNIt1) = XENT
NINT = JMAX = 1
‘00 20 I=lyNINT
XNI(Tel) = XNI(I) = XDI(I}
CONT INVE
DELETE INTERVALS AFTER ALL ARE RETIRED

NINT = JNAX
IF(XNICNINT).GT.0.0) GO TO 40

_ NINT = NINT = 1

IFININT .6T.0} GO TO 30 _
ERROR = ND. ENTERIKG 1ST INTERVAL LESS THAN OR EQUAL TC ZEROD
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o

WRITEIL INE, 260}
GO 10 S30

CALCULATE MIDTH AND MIDPOINT OF AGE-INTERVALS

IFININT .EQ.SMAX) NINT = JMAX - 1
CALL WIDMID (TINTYoJMAX,TNID,THIO)

WRITE HEADING

N XaXzXal Sﬂﬂﬂ

WRITE(L INEy 270) ACNTNGy (OESCRUL} ol=1,12)
GO TO (60+70,80)y METHOOD
WRITEIL INE, 4903
GO T0 90
70 WRITECL INE. 5C0)
GO T0 90
80 WRITE(L INE, 510)
90 CONT INVE

[
o

CIXPUTE LIFE TABLE

CALL LIFETB CSURCUM¢DEN9FLNLSM¢NETHOD »LINE)
INITIAL IZE BUFFERS

CALL SEYR (0.0,PARBUF,84)

CALL SETR (1.0s:FLNBUF,12)

CALL SETR (1.G¢BUFF693600}
COMPUTE LEAST SQUARES SOLUTION

CALL LSQEST (CLAMD,YLAMO.SELARO,CLANMLSELANL)

POSITION PARAMETER ESTIMATES IN BUFFER FOR OUTPUT

OO 000

03 110 MN=1,4

DO 100 MW=1,3

MML = WM - )

Jd = ((AN=1)83) + MM

PARBUF( 193 = CLANODIMN, MW)
PARBUF( 2¢J) = YLAND(MMoMW)
PARBUFI 393) = SELAMO( MM, MU
IF(MRL.LE.O! GO TDO 00

PARBUF{ &y J) = CLAMLIMML,MN,1)
PARBUF(5¢3) = CLAMLIMNLsMWe2)
PARBUF{ 69J) = SELAMLIMM],MW)
PARBUFI 793 = CLAMLIMM1oNU,3)
100 CONTINUE
110 CONTINUE
c
c CHECK RANGE OF MODEL 1 AND MODEL & PARAMETERS FOR EACH MEIGHT
c

00 140 Mu=),3
MM =



120

130

&»
o

OO0 OO0 OO0 OO0

(2 X2}

o0N0 600 ¢

110

IF(CLARD( NN o NN) .GE 0. 0) GO TO 130
IFI{NAM.EQel) WMRITECLINE430) MM MM
MRITE(L INE, €400 MMoMN

M= ({(MH=-1)83) + NW

IFIMN.EQel) CALL SETR (0.0,HAZBUF{1 M) oNIKT)
CALL SETR (0:0oSURBUF{ 1oR)4NINT*1)
FLNBUF{ MM N4} = 0.0

IFINNEQe4) GO TO 140

MM = 4

GO TO 120

CONTINUE

COMPUTE HAZARD FUNCTION
CALL HAZFCN (CLAMO+CLAKLFLNBUF (LINE)
COMPUTE SURVIVAL FUNCTION
CALL SURFCN (P,LINE,FLNBUF,CLAM],CLAMNOD}
COMPUTE LN-LIKELIHOOD FOR EACM MODEL
CALL LNLIK{P,FLNBUF)
PR INT QUTPUT BUFFERS

WRITE(L INEy300)

WRITE(L INE, 280)

MRITE(L INE, 290}

WRITE(L INE»310) (NUM(I)y I=1,6)

WRITE(L INE; 3203 (INUNLI3, I=1430, J=lo&)

OUTPUT PARAMETER ESTIMATES
WRITELL INE9330) ({ALABIJIoIde J=1084) ¢ (PARBUF(IeJd) e J=1012)y I=103)
WRITEIL INE9340) ((ALABLJIsI)s J=1+4) ¢ (PARBUFLIod)s J=4912)0 12496)
WRITE(L INE¢350) (ALABLJIT)y Jnly4) o (PARBUF(T9Jd) ¢ J=7.12)

OUTPUT LN-LIKELIHOOD VALUES
WRITE(L INEy 3600 (ALABLJI8)y Jmlod)e (IFLNBUF(19Jd)s S=ie3)y 1Im1,4)

COMPUTE PROBABILIVY DENSITY FUNCYION

00 160 Is1,NINT
00 150 J=2,12

PROBUFL 1¢d) = HAZBUF( I,J)*PROBUF(I )
CONT INUE

CONT INUE

PRINT ESTIMATES OF HAZARD FUNCTIONe SURVIVORSHIP FUNCTION,
AND PROBABILITY DENSITY FUNCTION :

00 170 KK=}1,3

IFIKKeEQe 1) WRITE(L INEL3TO0)
IFIKK oEQe 2} WRITE(LINE1410)
IFIKK oEQe3) WRITE(L INE, 420}
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[aXaXaXs)

180

(s X aNaNal

190

(aXsNaka)

200
210

220
230
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I8 = ((KK=2)%12) ¢+ 1

IE= 18 ¢+ 11

WRITEIL INEs 3103 (NUMIL)y m1,4)

WRITEIL INE. 3803 ((NUML1)y I=1e3)eJ=1:4)

WRITE(L INE+3903 (TINTWII)y (BUFF6({1¢J)s J=IB.1E)s I=1.NINT)

IFIKK EQe2) WRITE(LINE¢390) TINTVIIMAX) +» (BUFF6(JMAX 0 J) 9J=1918+1E)
IFIKK NEe2) WRITE(LINEL400) TINTVIJIRAX)

CONTINUE

DETERMINE IF DATA ARE EXPONENTIAL

CHOOSE LARGEST ULN-LIKELIHOOD FOR MODEL 1
BLNL = RANBUF(1,1)
NBLNL = 1
00 180 I1=2,3
IFIRUNBUFI], [).LE.BLNLE GO TO 180
BLNL = FLNBUF(1.1)
NBLNL = |
CONTINVE

COMPUTE A CHI-SQe WITH L DoFe AND ASSOCIATED PROBABILITVIES
FOR MODEL 1 VS 2o 1 VS 39y AND 1 VS & FOR THE WEIGHT SELECTED
ABOVE

00 190 1=2,4

CSQ(I-1} = 0.0

PCSQLI-1) = 0.0

IF(FLNBUF( JoNBLNL ).EQ.0.0) GO TO 190

CSQ{I-1) = 2,08ABS(FLMBUF{1,NBLNL) ~ FLNSUF(I,NBL=L))

PCSOLI-12 = CHISQICSQ(1I-1),1)

CONTINVE

CHI=SQ (<05) WITH 1 DeFe =3.8416. IF ALL TIWS ARE LTe. 3e84id
CONSIDER DATA EXPONINTIAL — OTHERWISE SELECT MODEL WITH THE
LARGEST LN-LIKELINOOD

MM = ]

CHMM = 0.0

MW = NBLNL

00 200 I=1,3

IF(CSQl 1).£Q.0.0) GO TOQ 200

IFICSQt 1).6T<3.8416) GO TO 210

CONTINUE

GO TC 230

MM =)

My = ]

FN = RLNBUF(1,1)

D0 220 LN =1,4

DO 220 LY =}1,3

IFLFLNBUF(LN,L¥).EQ.0.0) GO TO 220

IFCFLNBUFILMLN) LE.FN) GO TO 220

MM = LN

Ny = LW

FM = FLNBUF{LM,LW)

CONTINUE

CONTINUE
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240
250
260

270
280

290

300
310
320
330
340
350
360
370
380
390
400
410
420
430

440

450

460
470
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DETERMINE GOODNESS OF FIT OF MODEL CHOSEN

COMPUTE CHI=SQe WITH (S~1-K) D.Fe WHERE S= NO. OF INTERVALS
AND K= THE NO. OF PARAMETERS IN THE NODELs AND ASSOCIATED
PROBABILITIES FOR SAMPLE DATA VS. CHOSEN MODEL

CSQU4) = 2,0 & ABS(FLNLSM — FLNBUF(MN,NU))

K= 1

IF(MNGTeL) K = 2

IOF = NINT - K

PCSQL4) = CHISQICSQL4), IDF)

PR INT RESULTS OF SELECTING BEST FIT
WRITE(L INEo 450) C(NUMPL{1)o NBLNL, CSQCI), PCSQ(I}e I=1.3)
IF{MMEQ. 1) WRITE(LINE460) NBLNL
IFIMM NE.1) WRITE(L INEs4T0) MM, NBLNL
WRITE(L INE9 480) MMy MW, FLNBUF{MMsMUN) o FLNLSMy MMy, MW, CSQU4},
. IDF, PCSQL&)

GO 70 10
FORMAT STATEMENTS

FORMATI A8 2Xs 12A %12 2X9 1392XoF9.0,2X0510

FORMAT( 10X9 F9202X2F9.0)

FORMAT{//¢® ANALYSIS TERMINATED. NO. OF UNITS ENTERING FIRST AGE~
o INTERVAL IS LESS THAN OR EQUAL ZERO.*)

FORMATI LH19 7/ 93TX9AB92Xs12A4)

FORMAT(/7//7¢10X, *SODEL 1 = EXPONENTIAL® /010X *MODEL 2 = LINEAR ¢,
o YHAZARD®,/510Xe *MODEL 3 = GOMPERT2%9/,10Xs*MODEL & = WEIBULL®)

FORMAT( 77+ 10Xs *WEIGHTLII) = 2.%9/910XoMWEIGHT2(1I) = 1o 7 V°9/+10X,
o 'HEIGHTIL1) = N(]) * H(I)®)

FORMAT( LHLo /7479 49X SESTIRATES OF PARARETERSY)

FORMAT( (/028X 4 *NODEL *511,19X1))

FORMAT( 20X 603(* MWT *,11,2X)92X))

FORMAT( 20 1Xo 4R G9 1Xo 4l 3F82492X) 9/) 91 X94A% 91 X4 (3F8e492X) )

FORMATI 201 X9 4A69 27X 3{ 3F 8e492X) ¢/) o1 X 94A4 92T X3 (3F8,4,+2X) )

FORMATI LX o 4A 49 53X, 21 3F 8. 492X))

FORMAT{ 1X 9 4A% 1%+ 4( 3F8.2¢2X))

FORMATL 77774 04TXo *ESTINATES OF HAZARD FUNCTION®)

FORMATI 1Xo® INTERVAL START®9S5Xe4(3L° NWT 911,2X) ¢2X))

FORMATE 46X 9 FTe29TXe 3F 8o 492X e3F 8. 492X 93F 8, 492X 93F8,4)

FORMATI 6XoF 7029 12X 5iS( '82%,6X) ¢2X))

FORMATE 1H19 /77779 44Xs *ESTIMATES OF SURVIVORSHIP FUNCTION®)

FORMATL77479%1Xe *ESTINATES OF PROBABILITY DENSITY FUNCTION®)

FORMATI7/9° MODEL %9J19°% WEIGHT ®,1l,° IS INAPPROPRIATE SINCE®,
o ¢ THE ESTIMATE OF THE HAZARD FUNCTION IS NEGATIVE.®)

FORMAT(//¢° MODEL °3]1:% WEIGHT ®9l1ll9° 1S INAPPROPRIATE SINCE®,
e ¢ THE ESTIMATE OF THE SURVIVORSHIP FUNCTIQN 1S GREATOR THAN *,

FORMATI LH1o/////9° TEST OF MHETHER DATA ARE EXPONENTIALo///7
o SXe'MODELS WT. CHI-SQ D.F. P30 /e5Xe %L VS ?91106Xe1193X,
o F8e393Xe*1%93XeF4e2))

FORMAT( /779 5% *TEST INDICATES DATA CAX BE FITTED B8Y MODEL 1, °»
o 'MEIGHT %9 11)

FORMATL /779 5%, *TEST INDICATES DATA CAN BESV BE FITTED BY MODEL ¢,
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e Ile%y MWEIGHT *,11)

480 FORMAT(/////¢* TEST OF GOODNESS OF FIT OF CHOSEN MOOEL®e///,23Xs
o *MODEL *eIls% WTe ®olle3Xe ®SAMPLE DATA®s/,5Ke *LN-LIKELIHODD® s
o 2UTXF8.2097/7962X¢°CHI=SQ  D.F. PS4/ +5Ke®NODEL *,11,
o * Mo *411y® VS, SAMPLE DATA®s7XoF8.303Xs1244X ¢Fée2)
490  FORMAT(/p 50X, *CONDITIONAL PROPORTION RETIRED®)
500  FORMAT(/»S56Xs ACTUARIAL ESTIMATE *)
S10  FORMAT{ /o 52Xe *MAXINUM LIKELTHOOD ESTIMATE®)
530 STOP
c
END
c
c -
c
SUBRQUT INE WIDMED (TM,INToXNIDeH)
DIMENSION TM{1}sXMIO(1)eHIL)
c
c SUBROUT INE TO CALCULATE WIDTHS AND MIDPGINTS OF GIVEN
c AGE-INTERVALS
C
c THE INPUT PARAMETERS ARE DEFINED AS FOLLOWS
c ™ = INITIAL AGE-INTERVAL VALUES
3 INT - NUMBER OF AGE INTERVALS
c
IML = INT - 1
D0 10 I=l,IM1
IPL=1 +1
HII) = TMCIPL) = TM(I)
XMIDUID = TMLI) + HUINZ2.0
10  CONTINUE
RETURN
END
c
3
3
: SUBROUT INE L IFETB (SURCUM.DEN,FLNLSMeMETHOD +LINED
c
c SUBROUTINE TO COMPUTE LIFE TABLE DATA
c
c THE INPUT PARAMETERS ARE DEFINED AS FOLLONS,
c XNI - NUMBER ENTERING AGE-INTERVAL
c
c THE OUTPUT PARAMETERS ARE DEFINED AS FOLLOWS,
c SURCUM ~ CUMULATIVE PROPORTION SURVIVING (I.Eeo THE
3 SURVIVORSHIP FUNCTION FOR THE SAMPLE DATA)
c DEN =~ PROBABILITY DENSITY FUNCTION FOR THE SAMPLE DATA
c
DIMENSION DYPN(1003 ¢ SURPN( 1000 » SURCUM(100) sDEN(100) o SCSUR(100)
. SOENT 100) + SHAZT 100) +ELIF (1000 ¢ PLS{100) ySELIF(100 4 PLL2)
c
COMMON NINT, TINTV(100) ¢ THID( 1000 o THID(1 00 +XN1 (100) oXDI (100D ¢
. HAZO( 100} VHAZO( 100} +BUFF 6( 100436

CATA PL/AH o iHe/s
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INITIAL IZATION

INTPL = NINT ¢ 1
SURCUN{1) = 1.0

COMPUTE NOo. EXPOSED AND PROPOKTION RETIRED
DD 80 I=1,INTP]
IN THE FINAL INTERVAL XNI 1S ALLOMED TO BE ZERO
IFUINESINTPL JORe XNI(IDNE.0.0) GO 10 10
OYPNLI) = O.
GO T0 20
DYPN(I) = XDI(I)/XNILI)
CORRECT FOR OYPN = O OR DYPN = 1

IFIOYPN(1).€EQ.1.0) DYPNII) = (XNI(I)} = 0.5)/XNI(I1}
IFLOYPNL1).EQ.0.0) DYPNLI} = Q.5/XNILI)

COMPUTE PROPORTION SURVIVING AND CUMULATIVE PROPORTION
SURVIVING

SURPN(I) = 1.0 = DYPN(I)

IF(1.Q.1) GO TO 40

IMl = ] - ]

SURCURS 37 = SURPN( IN1) * SURCUMEINL)

COMPUTE PROBABILITY DENSITY = UNDEFINED IN THE LAST INTERVAL

DENTINL ) = (SURCUNTIIRLS ~ SURCURIZSI/TRIDIINL?
COMPUTE HAZARD AND VARIANCE OF HAZARD
IF(I.RQINTP1) GO TO 80
BRANCH TO SELECTED METHOD FOR ESTIMATING HAZARD RATE
GO TO {50,60,70)s METHOD
ACTUARIAL NETHOD ONE
HAZD(1] = DYPNLIM/THIOLID
VHAZOUI) = DYPNUI)SSURPNII)/XNILID/THIDII}®*2
SHAZ{I) = SQRT(VHAZDII))
GO T0 80
ACTURIAL METHOD THO
HAZ0(I) = (2.0 * DYPNI1D)ZETHIOLL) & (1.0 ¢ SURPNILII)
VHAZO(1) = ((HAZDIL) o= 2)/{XNI(]) ¢ (1.0 = SURPNII)?)) *
(1.0 = ({HAZO(1} * TNID(I}}/2.0) *% 2)

L]
SHAZ1 1) = SQRTIVHAZD(I))
Ge TC 80
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MAXINUM L IKELIHOOD METHCD

HAZO(I) = —ALOGE(SURPNIIDID/TWIO(L)

VHAZOII) = DYPNIIJ/Z(LTWIDII) s& 23 & XNICI) & SURPNI(I))
SHAZ{ 1) = SQRT{VHAZO(13}

GO Y0 8¢

CONTINUE
STANDARD ERROR COMPUTATIONS

DO 110 i=1, INTP]

SUM]1 = 0.0

IF{1.6EQ.1) GO TO 100

I¥l = | - )

DO 90 IM=]1, IM1

SUM] = SUNML ¢ (DYPNIIMII/Z(XNIC(IN) & SURPN(INI}
CONT INUE

VCSUR = (SURCUM(I) ¢ 2} & SUM)

SCSUR(I ) = SQRT{VYCSUR)

IFL1.EQ.INTPL) 60 TO 110

Ql = (CSURCUMI{I) = DYPNIL)) *¢ 2)/(THID(I) ®& 2)
Q2 = SUM] ¢ (SURPN(1)/(XNILI) & DYPNII)))
VDEN = Q1 & Q2 e

SDEN(I) = SQRTEVDEN)

CONTINUE

MEODIAN LIFE EXPECTENCY COMPUTATIONS

DO 3150 I=1ysNINT

PSRCH = 0,5 * SURCUMLT)

DO 120 IP=1, INTP1

IPRL = 1P - ]

IF(PSRCH.LT.SURCUM( INTP13) GO TO 140

IFIPSRCH.GT«SURCUN(IP) .AND. PSRCH.LE.SURCUMIIPMLI)) GO TO 130
CONTINUE

ELIF(I} = (TINTV(IPML) - TINTVII)} + (TWIDCIPAL) * ((SURCUNIIPML)
- = PSRCHI/(SURCUN(IPNML) ~ SURCURIIP)I))

PLS(L) = PL(1)

SELIF(I) = SQRTEISURCUN(I) *+ 2)/(4.0 * XNILLI} * DENIIPM])

- s 2))
GO T0 150
ELIF(I) = TINTVIINTPL) ~ TINTVII)
PLSII) = PLI2) v
SELIFII) = 0.0
CONTINVE
CALL °LMLIKS® TO CALCULATE LN-LIKELIHOOD FOR SANPLE DATA
CALL LNLIKS (XDI¢XNJIo¢SURCUMyNINToFLNLSH)
PRINT LIFE TABLE

WRITELL INEy 1700
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WRITEIL INEo 1800 (TINTV(I)s TMIOCI), TWID{1)e XNI(I)e XDILI),

- DYPNI1), SURPN(I), SURCUMILI)s DEN(I),

. HAZO(1)e SCSURELIS, SDEN(1), SHAZ{ID, ELIF(I),
PLSLI)s SELIFt1), Is],NINT)

lRITElL INE» 190) TINTVIINTPL) e XNIUINTPL) ¢ XDILINTPL),

. DYPNUINTPL)y SURPNLINTPL) o SURCURCINTPL),

. SCSUR{ INTPL)

WRITEIL INEy 200)

WRITE(L INE» 2101 FLNLSM

RETURN

FORMAT STATEMENTS

FORMAT(//7/7/7+58%o "LEFE TABLE DATA®o/7/+9Xs* INY Mi0 INT? 200

. NO.*),* PROPN PROPN CuUM PROB  HAZD®93(* ST ER®),*
. MED®y 5Xy *ST ER®o/8Xe* STARYT POINT WIDVH ENTER RETIRE
«RETIRE SURY PROPN DENS RATE Cum PROB HAZD LIFE
. LIFE® /066X *SURV®, 17Xy *SURY DENS RATE EXPECT EXPECT?)
FORMAT (7XoF6eloF8a20F 10202FF0093F8.45FTo49F9.4¢A19F8.4)

FORMAT (TXoeF6e106K9?850 5Ky 38°2F9,093F8.402(5X0°3%%) oFT.492(5X,*
«¥818 ),8X o088, 7Xy*0?)

FORMAT U//77/7¢TXe* & INDICATES NO MEDIAN LIFE EXPECTANCY CAN
«BE CALCULATED FOR THIS ENTRY.Y/,7X,* ®= CALCULATIONS INVOLVIN
«G INTERVAL WIDTH FOR LAST INTERVAL MAVE NO MEANING.*)

FORMAT (/77/7+,7X°* LN-LIKELIHOOD FOR SAMPLE DATA = *,Fl2.2)

END

a2 XeXaNal [a ¥ y]

[
o

SUBROUYT INE SETR {(FINDXeFIN¢N)

SET N ELEMENTS IN FLOATING POINT ARRAY FIN
EQUAL TO THE FLOATING POINT CONSTANT FINDX.

DIMENSION FINE1)
DO 10 I=1,N
FINI(I) = FINDX
CONTINUE

RETURN

END

OO ONO OON

SUBROUT INE LSQEST (CLANOsVLAMD e SELANO,CLAN] ,SELAM])
LEAST SQUARE ESTIMATES OF HAZARD RATES

THE INPUT PARAMETERS ARE DEFINED AS FOLLOWS.
TRID = AGE-INTERVAL NMIDPOINTS.
XN1 = NUMBER ENTERING EACH AGE-INTERVAL.
HAZD — HAZARD RATE IN EACH AGE-INTERVAL.
VHAZD VARIANCE OF HAZARD RATE IN EACH AGE-INTERVAL
NINT NUMBER OF AGE-INTERVALS.

THE OUTPUT PARAMETERS ARE DEFINED AS FOLLONS.



(2 Xz XaXaNalal

(2]

OO0 O

OO e

20

(2 XaXa X o)

117

CLARG <= LAMBDA-0 VALUES.

VLAMO <~ VARJANCE OF LAMBDA-O.

SELANO ~ STANDARD ERROR OF LAMSBDA-0

CLAM] <= LAMBDA=1 AND VARIANCE OF LAMBDA-1 VALUES.
SELAM] - STANDARD ERROR OF LARBDA-1.

COMMON NINT, TINTV(100)+ THIDC(100) » TWID(100) 9XNI £100),XDI(100},

. HAZD(100) ¢ VHAZD( 1000 +BUFF6(100+36)

DIMENSION V(100, 100)¢ M4 10041000 s TAC10001) +¥(100s1) »TB8(1200+2) ¢
. TAT(1, 1000, T8T(25100) ¢ VHAZL 2009 4) c TENPLL ¢100) +SELAMO(493),
. TEACLs1)oPLEL,1000, TENPB(2,100) +T2(2+2) +PLB(2+100)

A234( 29 1) CLANOL 4930 +CLAMLE393¢3) ¢ VLAMO(4+3),SELANL(3+3)

DATA LINE/ZLO/

EXPAND VARIANCE OF HAZARD FOR 4 MODELS.

00 10 I=1,NINT
00 10 J=1,4
VHAZ(Ie ) = VHAZD(I)
CONT INVE

INITIAL IZATION

DO 20 I=1,4

00 20 J=1,3
CLAMC{I¢J) = 0.0
VLAMO(I:J) = 0.0
CONTINVE

00 30 I=1,3

00 30 $=1,3

D0 30 K=1,3
CLAML(IeJ9K) = 0.0
CONTINUE

MM IS MODEL, MW IS MODEL MEIGHT. INITIALIZE AND INCREMENT.

MM =0
MM = 1 + )

IF(MN.5T.4) GO TO 360

A4 =0
N = MY ¢ |}
IF(NN.6T.3) 60 TO &0

FILL Yy TRy We AND V MATRICES WITH HAZARD RATE, MIDPOINT OF
AGE-INTERVAL, NODEL MEIGHT, AND VARIANCE OF HAZARD.

CALL SETR (0.0,Vs10000)
CALL SETR (0.0+¥,10000)

00 110 I=1,NINT

GO TO (60¢70+80090)¢ NN

TA(I, 1) = 1.0 .
Y{lel) = HAZD(ID
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VUL, I} = VHAZ{1.MM)
GO TO 100
70 T8(i,1) = 1.0
TB(1.2) = TMIDLI)
Y(Is1) = MAZDL(I)
VEIeI) = VHAZ( I ,MN)
GO Y0 100
80 TB(l.1) = 1.0
T8(1,s2) = THID(1)
Y(l,1) = ALOGU(HAZD(I1))
VIIs1) = VHAZUI MM /1 HAZD(])®*2)
GO TO 100
90 T8(Is1) = 140
TB8(1,2) = ALOG(TMID(]))
Y(l,1) = ALOGC(HAZD( 1))
Vilel) = VHAZLIMM)/LHAZDI] )*%2)
100 Wilel) = 1.0
IFIMN.EQe2) Wllol) = 1.0/VL10l)
LF(MNEQe3) Wllo1) = XNICI)STHIDII
110 CONTINUE

FIND LIETRANS) = ((T(TRANS) s ¥ & T) %% -1) & T(TRANS) s W

(e KaNaNal

FIND TUTRANS)
NR = NINT
NC = ]
IF(MM.GT.1) NC = 2
{FINC.EQ.2) GO TO 130
00 120 I=1,NINT
120 TAT(l,1) = TA(l,1}

G0 YO 150
130 DO 140 I=1,NINT

D0 140 J=1,2
160 TBT1J,1) = TBLI,J)
150 CONTINUE
IFINC.EQ.2) GO TG 200

c MULTIPLY TAT B8Y W TO TEMP GIVING TITRANS) *= M
00 160 I=1,NC
DO 160 J=1,NR
TENP(1eJ) = 0.0
DO 160 K=1,NR
160 TEMP(IsJ) = TEMP(LloJd) ¢ TATIIKISHIK.d)

MULTIPLY TEMP BY TA TO YEA GIVING T(TRANS) s 4 = T
TEA(Lls1} = 0.0 .
DO 170 K= 14NINT
70 TEAt1¢l) = TEALLeLl) + TEMPL1oKIOTALIK,]1)

o0

FIND INVERSE OF A 1 BY 1 MATRIX GIVING
(TI(TRANS) * 4 & T) 3¢ -]
TEA(Ly1l) = L. O/TEALLSL)

MULTIPLY TEA BY TAT YO YEMNP
00 1806 J=1,NINT

OO OO
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TEMPI1eJ) = TEAL191)3TAT(14Jd)

MULTIPLY TENP BY W TO PL
D0 190 J=14NINT
PL(1eJ) = 0.0
DO 190 K=1,NINT
PLUledl = PLILIJ) ¢ TERPL 1, K)®NIKeS)
GO TO 2%0
CONT INVE

MULTIPLY TBT 8Y W TO TEMPB
D0 210 Isl1eNC
D0 210 J=14NR
TEMPB(I,J) = 0.0
DO 210 K=]1,NR
TENMPBI1+J) = TEMPBII+J) & TBTII+KISHIK,S)

MULTIPLY TEMPB BY T8 TO T2
DO 220 I=1,2
DO 220 J=1,2
T2(1¢d) = Qa0
DO 220 K=1,NINT
T2(1ed) = T2U19J) + TEMPBLIHK)I*TBIK )

FIND THE INVERSE OF T2y A 2 BY 2 MATRIX = lg;g:;
t
DETE = T2(1,1)8T20242) = T2(1:,2)872(2,1)
ALl = T2(2,2)/0ETE
ALT = {-T2(1,2))/D0ETE
AL3 = (~T2(2,1))/DETE
ALée = T20 14 1)/DETE
Tatlyl) = ALL

T2(1e2) = ALT
T2{2,1) = AL3
T2(2:2) = ALS

MULTIPLY T2 BY TBT TO TEMPB GIVING
(ITITRANS) * W & T) 38 =1) & T{TRANS)
00 230 I=),2
00 230 J=1,NINT
TEMPB(I+J) = Cu0
D0 230 k=142
TEMPBI1¢3) = TEMPBII9J) + T2UIK)STETIKJ)

MULTIPLY TENPB BY M TO PLB GIVING L{TRANS}
00 240 I=1.2
DO 240 J=1yNINT
PLBIIyJ) = 0.0
D0 240 K=]1yNINT
SLB(1sJ) = PLBIIJ) & TENPBLI K)SUHIKLJ)
IFINN.NE.1) GO TD 290

-B8/DET)
A/DET)

FIND ESTIMATE — LANSDA AND VARIANCE OF LAMBDA, MODEL 1

ESTI = 0.0
00 260 I=1,NINT
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ESTI = ESTI ¢ PLIL,I)eY(I,y1)

MULTIPLY PL BY V TO TEMP
00 270 J=1,NINT
TEMP(1ed) = 0.0
D0 270 K= 14 NINT
TEMPC1oJ) = TEMP(1ed) ¢ PLILKISVIK.J)
ESTV = 0,0
00 280 I=1,NINT
ESTVY = ESTV ¢ TEMPIL,1)8PLI1,1)
CLAMO(1+MW) = CLAMO(L,MN) + EST!
VLAMOIl,MH) = VLAMO(L,NW) o+ ESTV
GO 10 50
CONTINVE

MULTIPLY PLB BY Y TO A234 GIVING
LAMBDA = L{TRANS) & ¥ FOR MODELS 2¢ 3¢ AND &
D0 300 I=1,2
A234(1,1) = 0.0
DO 300 K=1,NINT
A234(19 1) = A234LI,1) ¢ PLBLI,K)OVIK,1)

MULTIPLY PLB BY V TO TENPB GIVING VARIANCE OF
LAMBDA = LITRANS) * V & L FOR MODELS 25 3+ AND ¢
DO 310 I=1,2
DO 310 J=1.NINT
TEMPBUI+3) = 0.0
D0 310 K=},NINT
TEMPB(I+3) = TEMPBIIsJ) + PLELI JK)ISVIKeJ)

TRANSPOSE L
DO 320 I=1;NINT
DO 320 J=1,2
TBUIe3) = PLBLI 1)

MULTIPLY TEMPA BY TB TO T2
00 330 I=1,2
DO 330 J=1,2
T2(1+d) = 0.0
DD 330 K=1,NINT
T2{1ed) = T2(1eJ) ¢ TENPBILoKISTBIKeJ)
IF(MM.EQ.4) GO TO 340
G0 TO 350
ESTL = A234(2¢1) + 1.0
ESTV = EXPLA234L 1y 1)) /ESTI
A23411s 1) = ESTV
4236(2.1) = EST!
ESTV = (A234(1,1)8326T2(1,1)) + ((A234(1,1)852/A234(2,108%%2)
13T20202)) = (1(2.0%A234(1,1)8%2)/A23412,1)) *T2{1,+2))
ESTI = (A23411,1)87201,2)) ~ C(A23481+1)8T202,2))7A234182,10)
T2(1le 1) = ESTV
T2(192) = ESTI
T2{2,1) = ESTI

STORE FINAL RESULTS
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CLAND(MMoMU) = A234(1,1)
VLAMO(NN,NW) = T201,1)
CLAML(NNM=1,MUs1) = A23412,1)
CLAML (MN=1,MUl2) = T2(2,2)
CLAML(MN~1,NNs3) = T2{1e2)
GO TO 50

CONT INVE

COMPUTE STANDARD ERRORS
DO 370 I=1,4
00 370 J=1,3
SELANOL 1,J) = SQRTIVLAMOII,J))
IFll.6Q.1) GO TO 370
SELAMI(I-14J) = SQRTICLAML([-1+J+2)?
CONT INUE
RETURN
END

AA OO0 N 00O

-
o

SUBROUT INE STOR (1,MW.FACT,BUFF6)

SUBROUTINE TO STORE SURVIVAL AND HAZARD FUNCTION VALUES FOR
EACH OF 4 MODELS WITH A GIVEN MODEL WEIGHT IN THE PROPER
LOCATION OF A GIVEN BUFFER.

THE INPUT PARAMETERS ARE DEFINED AS FOLLOMS.
| = DEFINES THE STORAGE ROW IN BUFF6 OR AGE-INTERVAL
My = MODEL WEIGHY
FACT - VALUES TO BE STORED

. THE OUTPUT PARAMETER IS DEFINED AS FGLLONS.
BUFF6 — STORAGE BUFFER

DIMENSION BUFF6(100+12),FACTIS)

STORE VALUES
DO 10 MM=1,4
Jd = Ml ¢ ((MN-1)%3)
IFIBUFFOL 19J ) NEO.O0) BUFF6LI+J) = FACTINM
CONT INUE
RETURN
END

OOMNA A0O

SUBROUT INE HAZFCN (CLAMO,CLARLFLNBUF ,LINE}

SUBROUTINE TO COMPUTE THE HAZARD FUNCTIGN FOR EACH
AGE-INTERVAL.

COMMON NINT, TINTV(100) s THIDI150) » TWIDIL 002 9XNEE1 00D 4 XOLR200)
. HAZD{ 10029 VHAZOL 100) 9+BUFF6(100+36)

DENEHSION HAZBUF( 100, 12)sCLANG443) oCLANLES9303) oFLNBUF (449300’
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. HAZFl &)
EQUIVAL ENCE (BUFF6l 10100 HAZBUPLL,1))
COMPUTATION FOR 4 MODELS AMD NINT AGE-INVERVALS.

DC 30 Nw=1,3
IARAG = )
00 20 Is]l,MINT

NOODEL 1 - EXPONENTIAL
HAZF(Ll) = CLANOL1,M)

MODEL 2 - LINEAR
HAZF(2) = CLAMOC(2,AM) & CCLAMLEL RW,1)8TNID(1))

CHECK RANGE OF MAZARD FUNC TI1ONM
IF(HAZF(2).GE.0.0 GO TO 10
HAZF(2) = 0.0
FLNBUF{ 2,80) = Q0.0
IFLIFLAG.NEL.O) GO TO 10
{FLAG = O
M= 2
MRITEC INEe 40) MM,Mu

MODEL 3 - GOMPERTZ
FF = CLAROU3.MN) & (CLANLI(2+PU,10)5TNIDEL))
HAZF(3} = EXPIFF)

MODEL 4 WEIBWAL
F1l = M GGICLAMO( 4+ MMISCLANLI3,My11)
F2 = (CLAN1{3,Muy1) — 1.018ALOGITHIDEEIR
HAZF(4) = EXP(F1 + F2)

STORE WAZARD FUNCTION VALUES -
CALL STOR (1:MN,HRAZF,HAZBUF)
CONT INVE
CONT INUE
RETURN
FORMATE//7¢® MODEL *oIle®s MEIGHT ®9I10° IS INAPPROPRIATE SINCE®s
e * THE ESTIMATE OF THE MAZARD FUNCTICN IS NEGATIVE.®)
END

OODOADOONOAND O0N

SUBROUT INE SURFONIP oL INE<FLNBUF o CLANL »CLAND)

SUBROUTINE TO COMPUTE THE SURVIVORSHIP FUNCTION IN EACH AGE-
INTERVAL 2MD THE PROPORTION SURVIVING EACH AGE-INTERVAL (TO
8E USED IN LN-LIRKELHOOD CALCULATIONS) FOR EACH OF & NODELS
D 3 BEIGHTS

T OUTPUT PARANRETER (S DEFINED AS FOLLOMWS:
4 = PROPCATION SURVIVING
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OINMENSION PL100,12) 9 SURFL4) o SURBUF(100+12) +PROBUFL100+12)

. FULNBUF(493) yCLANOE 4933 oCLANL(393,3)
COMMON NINT, TINTV(100),THIO( 100) ¢ THIDC100) sXNLI200) +XDILL0DD
- HAZO( 100) + VHAZD( 100) »BUFF 64 100+36)

EQUIVAL ENCE (BUFF6(1+13)9SURBUF(Le1l)) s (BUFFO(1+25)+»PRDBUFI1,1))

SET FIRST INTERVAL
00 10 I=1,12
SURBUF(1,1) = 1.0
PRDOBUF(1s1) = 1.0
CONT INUE

COMPUTATIONS FOR & MODELS AND JMAX AGE-INTERVALS
Ji = NINY + 1
D0 60 Mu=1,3
1FLG2 = 0
IFLG3 = O
00 50 I=2,J1

COMPUTATIONS FOR THE SURVIVAL FUNCTION USING THE LOWMER TINME
BOUNDRY OF THE AGE-INTERVAL AND FOR THE PROBABILITY DENSITY
FUNCTION USING TMIDes THE INTERVAL MIDPOINT

00 40 KK=1,2

IF(1.EQeJ 1.ANDKK.EQe2) GO TO 40

IFIKKEQ.1) TT = TINTVII)

IFIKK .EQe2) TT = TNIDIL)

MODEL 1 - EXPONENTIAL
FF = =CLAMOL 1MW )*TT
SURF{1) = EXP(FF}

MODEL 2 - LINEAR
FF = =( (CLAMD(2,MH}STT) ¢ ((CLANLIL JMio1) S(TTS2)0/2))
SURF(2) = EXP{FF)
IFCSURF (2)oLEe1.0) GO TO 20
SURFI2) = 0.0
IFLIFLG2.NE0) 60 TO 20
1RG2s 1
FLNBUFI 2,Md) = 0.0
MM=2
WRITE(L INEs 100) MM, MU

MODEL 3 - GOMPERTZ
FFl = = (EXPICLANOL 3o MWD ) I ZCLANL(20MU,1])
FF2 = EXPICLAML( 2¢MU91)9TT} ~ 1
SURF{3) = EXPIFF18FF2) .
EF{SURF{3).LE.1.0) GO TO 30
SURFL3) = 0.0
IFLIFLG3.NE40) GO TO 30
IALG3 s }
FLNBUFL 3,MU) = 0.0
MM=3 .
MRITE(L INEs 100) NN R
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C MODEL & WEIBULL
30 FF = ={CLANO(4oMWIS{TTSCLAMLI3oMN,1)D)
SURFI&) = EXP(FF)

C STORE IN SURBUF
IFIKKoEQe 1) CALL STOR € 1oMie SURF ¢ SURBUF)
IFIKKEQ.2) CALL STOR { I4MWeSURF,PRDBUF)
40 CONTINVE
50 CONT INVE
60 CONTINUE

C CONMPUTE P -~ THE PROPORTION SURVIVING
00 80 J=1,12
DO 70 I=],NINT
Plled) = SURBUF(1¢1,J)/SURBUFILI,+J)
TEST = 1e0 = (1.0/(2,0%XNI{1)))
IFIPETs J)oGTLTEST) PlleJ) = TEST
IFI(P{1+J).GT7.0.0) GO TO 70

C ERROR CONDITION - PROPORTION SURVIVING LESS THAN OR EQUAL O
SURBUF( I¢1leJ) = 0.0
MM = ((J=-10/3) + 1
MW = J ~ {(MM-1}83)
FUNBUF( MM ,MW) = 0.0
WRITE(L INEy90) MMoNM
70 CONTINUE
80 CONTINVE
RETURN
c

C FORMAT STATEMENTS

90 FORMATI/7/7+° MODEL ®4119°9 WEIGHT °9Ile%¢ 55 IRAPPROPRIATE SINLE %
e *THE COMPUTED CUNULATIVE PROPORTION SURVIVING IS NEGATIVE OR
o SZEROs*)

100 FORMAT(//+" MODEL %911,% WEIGHT ®3lle%s IS INAPPROPRIATE SINCE®,

- e " THE ESTIMATE OF THE SURVIVORSHIP FUNCTION IS GREATER THAN®,

END

SUBROUT INE LNLIK (P,FLNBUF)
SUBROUTINE TO COMPUTE THE LN-LIKELIHOOD FOR EACH WODEL»
ACCORDING TO THE FOLLOWING FORMULA.

N
FLNBUF(JeK) = SUN CXDIC(I1®ALOG(1.0 = PlleJK)) ¢
I=1

N
SUM CEXNICLD = XDIUIDD#ALOGIPLI,1))
I=1

WHERE J%lreeccsd! KSloeees3: AND JK=l{J=1D83)K

OO MNOHOOND OHON



O OO
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THE INPUT PARAMETER IS DEFINED AS FOLLOWS:
(4 ~ ARRAY CONTAINING THE PROPORTION SURVIVING IN
EACH AGE-INTERVAL COMPUTED FOR EACH OF THE ¢
MODELS

OIMENSION P(100012)+FLNBUF{4,3)

COMMON NINToTINTVL100),THID( 100) » TWIDEL 00) »XNJE1003+XDI€100),
. HAZD{ 100) o VHAZDI 100) »BUFF6L100436)

DO 20 J=1,12

SUM1 = 0.0

SUM2 = 0.0

MM = ({J=1)/73) ¢ ]

NW = J - ({NR-1)%3)
IFLFLNBUF(MM,MU) .EQ.0.0) GO TO 20
00 10 I=](NINT

D = ALOG(1.0 - BL1,J)) * XOI(I)
SUM1 = SuM]l + D

S = ALOGIPI1+J)0StXNIC(I) - XDICIN)
SUM2 = SUN2 ¢ S

CONT INVE

FLNBUF(MM,MW) = SUN1 + SUM2

CONT INUE

RETURN

END

[a X a¥a)

anan

20

FUNCTION CHISQUXSQ, IDF)
FUNCTION ROUTINE TO COMPUTE THE CMISQ

Pl = 3,1415927

X = SORT{XSQ)

S2P1 = SQRT{2.0 * PI)

lF( lSO.LT.- lBO..OR.XSO.GT.l?QI XSQ.O.
2 = (1.0/52P1) & EXP(~XSQ/2.0}

TESYT I0OF - EVEN GF 30D
ITRY = 1DF/2
IFILITRY = 2) - IDF} 50010050

CASE 1 - 10F EVEN
SUM = 0,0
LOOP = (1OF -2)72
IFILOOP .EQ.0) GO TO 40 -
b0 30 L=1,L00P
oiv = 1.0
DO 20 EI=1,L
Fl1=1
DIV = DIV & (2,0 & Fl}
CONV INVE
EX = 2 ¢



30
40
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SUM = SUN ¢ (X ¢= EX)/DIV
CONT INUE

CHISQ = S2P1 & 7 & (1,0 ¢ Sum}
RETURN

CASE 2 - 10F 0ODD
Al = 43618
A2 = -,12017
A3 = ,93730
PP = 33267
T = 2.0/01.0 ¢ (PP s X))
QX = Z & (AL S T) ¢ (A2 & (T 38 2)) ¢ (A3 * (T 3% 3)))
SUM = 0.0
LOOP = (IOF ~ 1)/2
IFILOOP .EQ.0) GO TO 80
00 70 L=1,L00P
DIiv = 1,0
00 60 I=},L
Fl= [
DIV = DIV * ({(2.0 ® FI) - 1,0)
CONT INYE
EX= (2 3L)~1]
SUM = SUM + (X s EX)/DIYV
CONT INVE
CHISQ = (2.0 * QX) ¢+ (2.0 » Z ¢ SUM)
RETURN
END

O OO0 OO0

10

SUBROUT INE LNLIKS (XD o XNIySURCUNSNINT(FLNLSN)
SUBROUTINE TO COMPUTE LN~LIKELIKOOO FOR SAMPLE DATA.
DIMENSION XOI{100)¢XNI{ lOODoStRCUN(lOO).

SUML = 0.0

SUMZ2 = 0.0

00 10 I=I,NINT

P = SURCUM{I®L)/SURCUMLI)

SUML = SUMLl + ALOG(1.0-P} & XDI(I)
SUM2 = SUML ¢ ALOGIP) & (XNILI)-XDILT))
CONTINUE

FLNLSH = SUM]1 ¢ SUN2

RETURN

ENOD
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APPENDIX C: EXAMPLE OF OBSERVED LIFE TABLE

AND WEIGHTED LEAST SQUARES ESTIMATE OF PARAMETERS



INY NID
START POINT
0.0 0025
0.5 1.00
1.5 2.00
245 3.00
3.5 4.00
4.5 5,00
5.5 6,00
65 7-00
7.5 8.00
8.5 9.00
9.5 12.00
10.5 11,00
11.% - 12.00
12,5 13.00
13.5 14.00
4.5 15.00
L5.5 16.50
17.5 i18.00
18.5 Ll
]
**

INDICATES NO MEDIAN LIFE EXPECTANCY CAN B8E CALCULATED FOR THIS ENTRY,

INT
WIDTH

0650
l.oo
1.00
1.00
1.00
1.00
§+00
100
is0
L.00
1.00
1.00
1,00
1.00
1.00
1.00
2,00

1.00
'

NO.
ENTER

1000.
969.
858.
698.
562.
452,
351.
21.
198.
146.
102,

12.
45.
27,
16,

12.
Se

3.

1.

V=

1}

NO.
RETIRE

3l.
111,
160,
136,
110.
10l.

800

13.

52.

b4

30.

27.

18.

1l.

WEIBULL

==~ LAMBDA=0 = 0.08

LAMBDA~L = 1.5

CONDI YIONAL PROPORTICN RET IRED

PROPN
RETIRE

0.0310
0.1146
0.1865
01940
0.1957
00,2235
0.2279
0.2694
002626
0.3014
0.2941
0.3750
0.4000
.0.4074
0.2500
0.5833
0.4000
0.6667
0.5000

LIFE TABLE DATA

PROPN
SURV

049690
0.8854
0.8135
048052
0.8043
0. 7765
0.7721
0.7306
067374
0.6986
0.7059
0.6250
0.6000
065926
Q. 7500
04167
0.6000
03333
05000

CUM

PROPN
SURV
1.0000
0.,9690
0.8580
046980
0.5620
0.4520
043510
0.2710
041980
0.1460
0.1020
0.0720
0.0450
0.0270
0.0160
0.0120
0.0050
0.0030
0.0010

PROY
DENS

00620
0.11%0
0.1600
041360
0.1100
0.1010
0.0800
0.0730
0.,0520
0.0440
0.0300
0.0270
0.0180
0.0110
0.0040
0.,0070
0.0010
0.0020

**

HAZ0
RATE

040620
0e1146
0.1865
041948
0.1957
0.2235%
002279
0.2694
0420626
0.3014
0.2941
0.3750
0.4000
0.4074
0.2500
0.5833
002000
0.6667

L1

$T ER
CuM
SURV
0.0
0.0055
0.0110
060145
0.0157
0.0157
0.0151
0.0141
0.0126
0.0112
0.,0096
0.0082
0.0066
0.0051
00040
0,0034
0.0022
0.0017
0.0010

CALCULATIONS INVOLVING INTERVAL WIOTH FOR LAST INTERVAL HAVE NO MEANING.

LN=-LIKELIHOOD FOR SAMPLE DATA =

-3217.07

ST ER
PROB
DENS

0.0110
0.0099
0.0116
0.0108
040999
0.,0095
0.0086
0.0082
0.0070
00069
0.0054
0.0051
0.0042
0.0033
0.0020
0.0026
0.0007
0.0014

e

ST ER
HA20D
RATE

0.0110
0.0102
0.0133
040150
0.0167
0.0196
040224
0.0269
060313
0.0380
0.0451
0.0571
0.0730
0.0946
0.1083
0.1423
041095
0.2722

*e

MEO
LIFE
EXPECTY
4.0636
3. 7045
3. 22717
3.0250
2.8750
2.6164
204327
2.2386
2.1000
196567
1. 77178
1.5000
1.4091
1.6250
L3714
0,8571
242500
0.7500

*

ST ER
LIFE
EXPECY
0.1437
0s1415
0.1450
001631
001482
0s1456
0.1801
o.108M
02345
0.201 4
0.1870
0.2357
0.3049
066495
0.2857
0:2474
0.3590
0.4330

L

8¢T



MODEL )
MODEL 2
MODEL 3
MODEL 4

MEIGHT]
WEIGHT2
WEIGHT)

LAMBDA=D
VARILAMBDA-~0)
STLERROR(IL AM-0)
LAMBDA-1
VARILAMBDA-1}

ST .ERROR (L AM~L )
COVILAM=0, LAN-1)
LN-LIKELIHOO0OD

INVERVAL STARY
0.0
0.50
1.50
2.50
3.50
4.50
5.50
6450
7450
8.50
9.50
10.50
11.50
12.50
13.50
14,50
15.50
17.50
18.50

1)y = 4,
(1) = 1,
(1) = N¢

EXPUNENT IAL
L INEAR HAZARD
GONPERTZ

NEIBULL

/v
1)y ¢ HIL)
MODEL 1
MY 1 WY 2 WY 3
0.2897 0.1620 0.1800
0.0004 0.0000 0.0000
0.0210 0.0050 0.,0053
~2044.70-2614460-2590.15
MODEL 1

wY 1 Ny 2 wY 3
02897 0.1620 0.18068
0.2897 0.1620 0.1888
0.2897 0.1620 0.1888
0.2897 0.1620 0.1688
02897 0.2620 0.1888
0.2897 0.1620 0.1888
.2897 0.1620 0.18688
0.2897 0.1620 0.1808
0.2897 0.1620 0.1888
042897 0.1620 0Oo.M808
0.2897 0.1620 0.1888
0.2897 0.1620 0.1888
0.2897 0.1620 O.l888
02897 0.1620 0.1088
02897 0.1620 0.18088
042897 001620 0.1808
0.2897 0.1620 0.1888
02897 041620 O.1008

L1 "

FSTIMATES UF PARAMETERS

WY 1
0.1039
0.0010
0.0317
0.0216
0. 0000
0.0059

MODEL 2
WY 2 WY 3 “Y 1
0.0927 0.10%8 «2,0%580
0.000L 0.0001 00064
0.0071 0.0077 0.0800
0.0244 0.0224 0.0799
0.0000 0.0000 0.0002
0.0018 0.0019 0.0135
=0.,0010

MODEL 3
uy 2 wv 3
=2.0290 =2.2058
0.0024 0.0036
0.0491 0,0%99
0.0930 0.8215%
0.0001 0.0001
0.0078 0.0101
-0.0003 ~0.000%

=~2506040-2514062~25030107 ~-2534.23-2519.22-2521.38

ESTINATES OF HAZARD FUNCTION

MY |
0.1093
01255
Oele7
0.1687
Ce1504
0.2120
002336
02552
0es2768
002984
0.3200
0.3416
03633
0.3849
0. 4065
004281
044605
0.4929

[ 1]

MODEL 2

WY 2 WY 3 Wy i
0.0988 0.111¢4 0.,1303
0.1171 0.1292 0.1363
0.1415 0.1505 0.1498
0.1639 0.1729 0.1623
041903 001952 0.4758
02147 0.2176 0.1904
0.2391 0.2399 0.2063
0.2635 002623 7 3234
042679 042846 Je2420
003123 003070 0020622
0.3367 0.3293 0.2840
0.3611 043517 0.3076
0.3656 0.3740 0.3332
0.4098 0.3964 0.3609
0.4342 004187 043909
06566 0.4411 064235
004952 04,4746 064774
0.5318 0.5082 0.5382

o - *e [ 1)

MODEL 3

wy 2 wi 3
0.1346 0.1136
0. 1443 0.1244
061383 041405
0.1738 0.1586
001907 0.1793
0.2093 0.2022
02297 0.2283
0.2520 0.2578
0.2766 0.2911
0.3036 0.3207
0.333L 0.3712
043656 0.4191%
04012 0.4732
0.4403 0.5344
0440832 006034
0.5303 0.6613
06097 0408175
0.7009 0.9809

e (1]

LR
0.080¢
0.0001
0.0079
1.4392
0.002%
0.0504

MODEL 4
Ny 2
0.0042
0.0000
0,0062
1.4227
0.0011
0.0329

WY 3
0.0830
0.0001
0.0071
14230
0.0017
0.0410

=0.0004 ~0.,0002 -0.,0003
=2503e34-2501.95-2%503.49

Wy 1
0.0629
0.1157
0.1569
0.107¢
0.2127
0es23406
0.2541
0.2719
0.2804
0.3037
G316t
0.3317
0+3646
0.3%569
003687
0.300¢
003963
0.4117

0

NODEL ¢

0.06067
01198
001606
0.1907
0.2153
0,2366
0.25%6
0.2728
0.28066
003033
Q.31 72
0.3302
0.34206
0.3544
003656
0.3765
0.3919
0,400606
[ ] ]

0.0087
0.1182
Qe 1504
0.2080
0.2124
0.2334
0.2521
0e.2691
0. 2847
0.2993
0.3129
0.32%86
0.3380
06 3496
0.3608
0.3714
0430867
0e4012
*e

6¢T



INTERVAL START
0.0
0.50
1.50
2450
3,50
4.50
5450
6.50
T.50
8450
9.5%0

10.50
11.50
12.50
13,50
14,50
15.50
17.50
18.50

INTERVAL START
0.0
0.50
1.50
2.%0
3.50
4.50
5.50
6.50
T.50
8.50
9.50

10.50
11.50
12.50
13.50
14.50
15.50
17.50
18.50

LA
1.0000
0.8651
0.6475
0.4847
0.36286
0.2715
0.2032
0.1521
0,1139
0.0852
0.0638
0.0477
0.0357
0.0267
0.,0200
0.0150
0.0112
00063
1.0000

AR
0.2897
0.2168
0.1623
0.1215
0.0909
0.0681
0.0509
0.0381
0.0285
0.0214
0.0160
0.0120
0.0090
0.0067
00050
0.0039
0.0024
0.0016

*"

ESTIMATES OF SURVIVORSHIP FUNCTION

MODEL 1} MODEL 2

WY 2 WY 3 Ny 1 WY 2 NTY 3 wY |
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
09222 049099 0:9468 0.9518 0,9458 09369
0.7843 0.7534 0.8351 0.8466 0.8320 0.8159
0.6670 0.6238 0.7209 0.7349 0.7158 0.7023
045673 005165 046082 06,6225 066021 0.39T71
0e4824 0.4276 045034 0.5146 004953 045008
044103 063541} 0.407Z 004152 003985 0.4139
003489 0.2932 03224 003269 043135 003368
02960 002427 062498 0.2512 042412 00,2693
0.25246 0.2010 0e1894 0.1884 0.1814 0.2114
0.2146 001664 0.1405 0.1378 0.1335 0.1626
0.1825 0.1378 Ce1020 00,0984 0.0960 0.1224
0.1552 0.1141 0.0725 0.0686 0.0675 0.0900
061320 0.0944 0,0504 0,0467 0,0465 0.0645
0.1123 0.0782 00343 0.,0310 0.,0313 0.0449
0.095% 0.0647 0.0229 0.,0201 0.0206 00304
000812 0.0536 0.0149 0.0127 0.0132 00199
0.0587 0.0368 0.0059 0.0047 0.0051 0.0077

HOCEL 3
T 2
1.0000
0.9349
0.8093
0.6907
0.5805
0.4797
003891
0.3092
002403
0.1822
0.1345
0.0964
0.0669
000448
0.0288
0.0178
0.0105
0.0031

ESTINATES OF PROBABILITY OENSITY FUNCTION

MODEL 1 . MODEL 2

NT 2 Wt 3 WY 1 Wy 2 WY 3 WY 1
0.1620 0.18088 01093 0,098 0.1114 0.1303
0.1378 0.1563 0.1119 0.1055 O0.1140 0.1211
0.1172 0.1294 0.1145 001120 001165 0.1136
0.0996 0.1072 0.1121 0.1124 0.1138 0.10%3
0.0847 0.0887 01057 0.,1080 0,1069 0.0963
0.0721 0.0735 000962 000995 0.9969 0.0869
0.0613 0.0608 0.0849 0.0884 000850 0.0772
0.0521 0.0504 0.0726 0.0757 0.0723 0.0674
000443 0.0417 0.0604 0.0628 0.0597 0.0579
040377 0.0345 0.0488 0.0505 000479 0.0487
0.0321 0.0286 0.0384 040393 0.0374 0.0402
0.0273 0.0237 0.0295 0.0298 0.0284 0.0324
0.0232 0.0196 00220 0.0219 0.0210 0.0255
0.0197 0.0162 0.0161 0.0156 0.0151 0.0195
00160 0.0134 0.0114 0.0109 0.0106 0.0145
0.0143 0.0111 00079 0.0073 0.0073 0.0105
0.0112 0.0084 0.0044 0.0039 0.0040 040060
0.0088 0.0063 0.0023 0.0019 0.0020 0.0032

L 1] *e (1] *" e e

MODEL 3
uY 2
0e 1346
0.1257
0.1186
0.1103
0.1009
0.0906
0.0799
0.06089
0.0581
0.0477
0.0381
0,0295
0.0221
0.0159
0.0310
0.0073
0.0036
0.0015
*e

WY 3
1.0000
0.9448
0.8342
0.7249
0.6185
0.5170
0.4223
0.3361
042396
0.1940
0.1396
0.0963
0.0633
0.0394
0.0231
0.0126
0.0064
0.0012

uT 3
0.1136
0.1106
0.1095
0.1064
0.1015
0.0948
0.0863
0.0765
0.0656
0.0544
0.0433
0.0329
0.0238
0.016)
0.0104
0.0062
0.0024
0.0008

¢

uY |}
1.0000
0.9708
0.8658
0.7404
0.6140
0.4964
0.3927
003046
0.2321
0.1739
0.1284
0.0934
0.0671
0.0475
0.0332
0.0230
0.0157
0.0071

WY 1
0.0629
0.1068
0.1261

- 0el1268

0.1178
0.1038
0.0861
0.0725
0.0561
0.0455
0.0349
0.0263
0.0195
0.0142
0.01C2
0.0072
0.0042
0.0024
*e

MODEL 4
WY 2
1.0000
0.9691
0.68608
0.7333
0.6062
0.48008
030839
0e 2989
062278
0.1708
0.12%9
0.0917
00659
0004608
0.0328
0,0228
0.0156
0.00M

MODEL 4
WY 2
0.0667
0.1101
0.1282
0.1275%
Oell?5
001030
0.0870
0.0713
0.0570
000448
0.0341
000257
0.0191
0.0139
0.0100
0.0071
060042
000024
e

0.0076

WY 3
0.0657
0.1087
0.1268
0.1265
0.1169
0.1028
0,087
0.0716
0.0574
0. 0451
0.0347
0.0263
0.0193
0.0143
0.0104
0.0074
00 0044
0.0025

(1

0tT



INDICATES NO MEDIAN LIFE EXPECTANCY CAN BE CALCULATED FOR THIS ENTRY.

INT nio
START POINT
0.0 0.2%
05 1,00
1.8 2.00
2.5 3.00
3.5 4.00
4.5 5.00
5.5 600
6.5 7.00
1.5 8.00
8.5 9.00
9.% 10.00
10.5 11.00
11.5 12.00
12.5 13.00
13.5 14.00
14.5 15.00
15.5 16.50
17.5 18.00
16.9 L1
L]
e

LR=-LIKELIHOOD FOR SAMPLE DATA =

INT
WIDTH

050
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
2.00
1.00

(1]

NO.
ENTER

1000,
969.
8580
698.
562.
452,
351.
271.
198.

146,

102.
T2
45.
27.
16.
12.

Se
3.
|

Ve 1

NO.
RETIRE

3l.
11,
160.
136,
110.
101,

80.

73.

52

44,

30,

21.

18,

WEIBULL

PROPN
RETIRE

0.0310
0.1146
0. 1065
0.1 948
0.1957
0.2235
0.2279
0.2694
0.2626
0.3014
0.2941
0.3750
0.4000
0.4074
0.2500
0.5833
0.4000
0.6667
C.5000

== LAMBDA-0 = 0.08

ACTUARIAL ESTIMATE

LIFE TABLE DATA

PROPN
SURV

0.9690
0.8854
0.8135
0.8052
0.8043
0.7765
0.7721
0. 7306
0.7374
0.6986
0. 7059
0.6250
0.6000
0.5926
0.7500
0.4167
0.6000
0.3333
0.5000

CUM

PROPN
SURY
1.0000
0.9690
0.8580
046980
0.5620
064520
0.3510
0.2710
0.1980
0.1460
0.1020
0.0720
0.0450
0.0270
0.0160
0.0120
0.0050
0.0030
0.,0010

PROB
DENS

0.,0620
0.1110
0.1600
0.1360
0.1100
0.1010
0.0800
0.0730
0.0520
0.0440
0.0300
0.0270
0.0180
0.0110
0.0040
0.,0070
0.0010
0.0020

*0

LANBOA=L = 1,5

HAZD
RATE

0.0630
0.1215
042057
0.2159
0.2170
0.2516
0.2572
0.3113
0.3023
0.3548
0.3440
0.4615
05000
0.5116
0.28%97
0.823%
0,2500
1.0000

"

ST ER
CUM
SURV

0.0

0.,0055
0.0110
0.0145%
0.0157
0.0157
0.0151
0.0141
0.0126
0.0112
0.0096
00002
0.,00066
0.0051
0.0040
0.0034
0.0022
0.0017
0.0010

CALCULATIONS INVOLVING INTERVAL WIDTH FOR LAST INVERVAL HAVE NO MEANING.

-3217.07

ST ER
PROB
OENS

0.0110
040099
0.0116
0.0108
0.0099
0.0095
0.0086
0.00082
0.0070
0.00065%
0.005¢
0.0051
0.0042
0.0033
0.0020
0.0026
0.0007
0.0014

.

ST €ER
HAZO
RATE

0.0113
0.0115
0.0162
0.0184
0.0206
00248
0.0285
0.0360
0.0414
0.0526
0.0620
0.00864
0.4
0.1491
0.1414
0.2037
0e1712
0.6124

[ 1

MED
LIFE
EXPECT
4.0636
3,7045
3. 2217
3.0250
2.0750
2.6164
24327
22206
241000
Le 9067
le?778
15000
1.4991
1.6250
13716
0.08571
22500
0.7502

ST ER
LIFE
EXPECY
0.1437
0s1415
0.1450
0.1651
0.1482
0. 1456
0.1801
o.1071
0.2345
0.2014
0.1070
0.2357
0.3049
0.6495
0.2857
0.2474
0.5590
0.4330

]

€T



132

e
L6L9°0
809¢°0
60%y°0
0LZY°0
9219°0
9L6€°0
619€°0
$$9€°0
089€°0
$62€°0
960€°0
%082°0
1$92°0
06€2°0
260240
¥sL1%0
8c21°0
Z990°0
€ An

SL°S6YT~09°6692-69°96%2~
€000°0~ 2000°0~ €000°0~

9290°0
100°0
({3458,
9000°0
1000°0
0980°0
€ AN

[ 1]
L199%°0
$.9%°0
124884
1€€4°0
»wiveo
1€04°0
iLse°o
$%0L€°0
125¢°0
6£€€ °0
6£1€°0
2L62°0
$092°0
0zy2Z°0
e112°0
¥%6L1°0
o
89900
2 In

¥ 1300W

%9€0°0
€100°0
¥9¥ 1
8900°0
0000°0
9990°0
T AN
¥ 1300W

[ 4
1225°0
2006°0
4929°0
Y09%°0
SEYY°O
6524°0
9L0%°0
99€°0
€89€°0
oLYC°0
*2c°0
100€°0
4€L2°0
9%942°0
sl12°0
€Leo
y121°0
€090°0
L L]

6190°0
8€00°0
6y0s°1
9000°0
1000°0
4080°0
tin

[ 1] "
G21€°Y 2896°0
0Z40°1 12208°0
$618°0 1069°0
05§9L°0 6529°0
¥899°0 €19$°0
1486°0 €€0$°0
€015°0 €1$%°0
6S9%°0 2%0%°0
960€°0 629¢€°0
%0%€°0 962€°0
$L6T°0 @8V62°0
66$2°0 L192°0
1222°0 9%€2°0
$961°0 #012°0
$€41°0 2881°0
¢161°0 2691°0
$2€1°0 L161°0

9611°0 @6€l1°0
€ I 2 AN
€ 3004

9L°5152-01°€162~2Y°L1S52~
4100°0~

9000°0~ %000°0~
6010°0 €600°0
1000°0 1000°0
6%€1°0 0601°0
2€90°0 6950°0
0400°0 0€00°0
WS1°2~ 6966°1~
€ in 2 AN
€ 300W

L 1]
9EEL° 0
09€9°0
¥166°0
€105°0
96S%°0
*919°0
89L€°0
92%€°0
$11€°0
2€82°0
sL92°0
1%€2°0
0212°0
$€61°0
6541°0
0091°0
9691°0
¥€1°0
1 1N

*
2029°0
€L25°0
SH€S°0
090s°0
YLLY*O
684%%°0
€024°0
916€£°0
2€9¢€°0
L19€€°0
190€°0
L0
0692°0
$022°0
6161°0
$€91°0
S9c1%0
$€T1*0
€ 1IN

[ 1]
99590
44090
209s°0
882$°0
€L6%°0
86940
5%€5°0
620%°0
ylLED
00%¢°0
$80€°0
0LLZ°0
£$%2°0
1412°0
92810
116140
L611°0
1960 °0
R L)

¢ 300K

*»

8699°0
$619°0
20L16°0
9L€5°0
$405°0
L1L%°0
08¢0
0904%°0
A€LE0
20%€°0
¥20€°0
$942°0
L1%2%
8022°0
65L1°0
1€41°0
2011°0
94800
1 AN

NOIAINNS QUVYZVH 40 S3LVWILS3

8L10°0
€000°0
€$60°0
£101°0
€010°0

TET0° 2~

1 in

16°€052-86°€05Z~-9¥° 9062~

42000
0000°0
$020°0
8600°0
1000°0
€90t °0
€ AN

€200°0
0000°0
§1€0°0
0800°0
1000°0
2600°0
N L]

< 1300w

$210°0
2000°0
62€0°0
9490°0
9%00°0
YLL0°0
tan

SY313dYYVd J0 S3AVYWILSI

" [ 2]
2212°0 8E9N°0
2212°0 9€91°0
2212°0 8¢e91°0
2212°0 9€91°0
2212°0 6€91°0
2212°0 6€91°0
2212°0 €¢€91°0
2212°0 0£91°0
2212°0 €E9°0
2212°0 ©€91°0
2212°0 9€91°0
e2V12°0 8€97V°0
2212°0 8E91°0
2212°0 ©8€91°0
¢212°0 9€91°0
2212°0 BES1°D
2120 6€91°0
2212°0 8€91°0
€ 1M 2 1A

1 7300W

"
66$€°0
665€°0
665€°0
665€°0
665€°0
665€°0
665€°0
665€°0
665€°0
665€°0
66%$€°0
665¢E°0
665 ¢€°0
66%€°0
665€°0
669€°0
665€°0
665€°0
1 AN

€€°5052~12°2192-80° 29L 2~

4900°0 ©500°0
0000°0 0000°0
eZ12°0 €E91°0
€ 1IN 2 AN

1 7300W

91%0°0

4100°0
665€°0
T 1A

0s°61
0s°L1
0s°51
0s°vl
3s°¢l
o0s°2t
0% 11
0s°01
05°6
0s°8
0s°¢
069
0s°Ss
0s°y
0s°¢
0s°2
0s°*1
0s°0
0°0
1¥ViS WAYIIND

QOOHIIINI1-NT
1=KV T°0~KVI1)ADD
( 1-HY T ¥0¥YI* S
(1-VOaKYTIUVA
1-vaanv

1 0-WY ) YOYY3I*1S
(O=VAOWVYINUVA
0=-vQany?

(I)H » (1IN = (T)EAHOIIN
A/ °V = (1)ZAHOIIN
1 = (I)TLHOI3N

QUYVIVH dVINIY
IVILININOOXI

MNGIIN =

22934 N0

¥ 3004
€ \OOW
¢ BCOW
1 1aoW



INTERVAL START
0.0
0.50
150
2450
3.50
4.50
5450
6450
750
£.50
9.50

10.50
2150
12.50
13.50
14.50
15.50
17.50
18.50

INTERVAL STARY
0.0
0.50
1.50
2450
3.50
4.50
5.50
6.50
T.50
8.50
9.50

10.50
11.50
12.50
13.50
14.50
15.50
L7.50
18.50

WY 1
1.0000
0,8353
0.5829
0.4067
0.,2838
0,1980
0.1382
0.0964
0.,0673
0,0469
0.0328
0.0229
0,0159
0.,0111
0,0078
0.0054
0.0038
0.,0018
1,0000

NT L
0.3599
0.2511
0.1752
0.1223
0.0853
0.0595
0.0415
0.0290
0.0202
0.0141
0.0098
0.0069
0.0048
0.0033
0.0023
0.0016
0.0009
0.0006

L L]

MODEL 1
Wy 2
1.0000
0.9214
0.76821
06639
0.%5636
0.4785
0.4062
0.3448
0.2927
0,2485
0.2109
0.1790
01520
0.1290
0.1095
0.0930
0.0789
0.0569

MODEL 1L
wY 2
0.1638
0. 1391
0.1181
0.1002
0.0851
0.0722
0.0613
0.0520
0.0442
0.0375
0.0318
0.0270
0.0229
0,0195
0.0145
0.0140
0.0110
0.0086
L 1]

NT 3
1.0000
0.8993
0. 7274
0.5603
0.4758
0.3848
0.3113
0.2517
0. 2036
0.1647
0.1332
0.1077
0.0871
0.0705
0.0570
0.0461
0.0373
0.0244

ESTIMATES

WY 1
10000
0.9581
0.8581
0.7437
06237
0.5062
0.39715
0.3021
0.2221
0.1581
0.1089
0.0725
0.0468
0. 0292
0.0176
0.0103
0.0058
0.0017

ESTINATES OF

NY 3
0.2122
0.1716
0.1388
001123
0.0908
00734
0.059%
0.0480
0.0389
0.0314
0.025¢
040206
0.0166
0.,0134
0.0109
0.0088
0.0064
0.0047

L 24

WY 1
Qe 0856
0 1004
0.1148
0.1203
0.1178
0.1088
0.0955
0.00800
0. 0640
0o 0491
0.0362
0. 0257
0.0175
0.0118
0.0073
060044
0.0020
0.0008

ot

OF SURVIVORSHIP FUNCTIGN

HODEL 2
WY 2
1.0000
0.9531
0.8456
0.7270
0.6057
0.4889
0.362%
0.2899
0.2130
0.1516
01046
0. 0699
0.0453
0.0284
0.0473
0.0102
0.0058
0.0017

WY 3
10000
0.9449
0.8257
0.7013
0.5708
0.4643
0.3620
062742
0.2019
0.1445
001005
0.0679
0,0446
0.0285
0.0177
0.0107
0.0062
0.0020

WY 1
10000
0.9345
0.8080
0.6085
05774
0.4758
0.3845
0.304)
02352
0.2772
0.1297
0.0921
0.0632
0.0417
020265
0.0160
0.0092
0.0026

MODEL 3
WY 2
1.0000
0.9325
0.8012
06764
0.5601
0.4538
0.3588
0.2762
0.2063
0.1489
Nel036
0.0691
0.0440
0.0266
0.0152
0.0081
040040
0.0008

PROBABILITY DENSITY FUNCTION

HODEL 2
wy 2
0. 0961
0.1079
0.1190
0.1216
0.1170
0.1066
0. 0926
0.,0770
0.0613
0.0469
0.0346
0. 0245
0.0168
0.0111L
0.0070
0. 0043
0. 0020
0.0008
[ L

WY 3
0.1134
0.1195
0.1247
0.1227
0. 1147
001024
0.0878
0.,072)
0.0574
0.0439
0.0325
0.0232
0.0161
0.0107
0.0070
000044
0.0021
0.0009

oe

WY 1
0e1354
042266
0.1195
0.1112
0.1017
0.09)3
0.0803
0.0691
0.0580
0.0474
0.0376
0.0289
0.0214
0.0152
0.0104
0.0067
0.0032
0.0013

L L]

MODEL 3
uy 2
0.1398
0.1314
0.1248
0.1164
0.10064
0,0950
0.0827
0,0699
0.0573
0.0453
0.0344
0.0250
0.0173
0.0114
0.0070
0.0040
0.0015

0.0005
*®

uY 3
10000
09419
0.8251
0.7090
0.5961
0.4887
0.3894
043002
0.2229
0.1565
0.1074
0.0687
0.0412
0.0230
0.0118
0.0055
0.0023
00003

uY 3
0.1196
0.1170
Oellb62
0.1130
041075
000994
040892
00773
0.0644
0.0512
0.0386
0.0274
0.0182
0.0111
0.0062
0.0031
0.,0009

0.0002
.

WY 1
10000
09720
0.8620
0.72358
05876
0.4602
03500
0.2593
0.18718
0.1325%
0.0917
0.0622
00614
0,0270
0.0173
0.0100
0.0068
0.0025

WY 1
00603
0.1120
Gel371
0.1387
0.1277
0.1102
0.0907
00717
0.0549
0.0407
00294
0.0207
0.014)
0.0096
00064
0.0041
040021

0.0010
s

0.0032

MODEL 4

uyY 2
0.0668
O.11606
0.13680
O.1372
0.125%0
0,1074
0.0003
0.0700
0,053
0e 0404
00293
0s0211
0.0148
0.0102
0.0069
0.0046
0.0024

0.0012
.

NY 3
1.0000
049693
0.08559
0. 7200
0.5842
04601
0.3530
0s 2646
0. 1941
0.1396
0.0986
0.0684
060467
0.0314
0.0208
0.013¢
0.0087
0.003%

uY 3
0.0662
0.1154
0.13660
0.1362
0. k244
o.1071
0.00084
0.0704
060544
000409
0.0308
0.0216
0.015)3
0.0106
0.,0072
0.0048
0.0026

0.0013
[ ] ]

€eT



INDICATES NO MEDIAN LIFE EXPECTANCY CAN BE CALCULATED FOR THIS ENTRY.

INT NLD
START POINY
0.0 0.25
0.5 1.00
1.5 2.00
205 3,00
3.5 4.00
4.5 5.00
5.5 6.00
6.9 7.00
7.5 8,00
8.5 9.00
9.5 10,00
109  11.00
1.9 12.00
12.3  13.00
13,5 14,00
14.5 15.00
15.5 16.50
17.5 18.00
18.5 e
]
e

INT
WIDTH

0.50
1.00
l.oo
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
2.00
1.00

.t

NO.
ENTER

1000,
969,
856,
6980
562+
452,
351.
27l.
198.
146,
102.

T2¢
45,
27,
L6.
12.
Se
3
e

1}

NO.
REVIRE

3.
iil.
160.
136.
110.
101.

80.

13.

S52e

44,

30.

27,

18,

WEIBULL

== LAMBOA-0 = 0,08

LAMBDA-] =

MAXTMUM LIKELIHOOD ESTIMATE

PROPN
REVIRE

0.0310
0e1146
0.1865
0.1948
0.1957
0.2235
0.2279
0.2694
0.2626
0.3014
0.2941
0.3750
0.4000
04074
0.2%00
0.5633
04000
06667
0.5000

LIFE

PROPN
SURYV

0.9690
0.8854
0.8135
0.8052
0.8043
0.7765
o.7721
0.7306
0.7374
0.6986
G.7059
0.6250
0.6000
0.5926
0.7500
0.4167
0.6000
063333
0.5000

TABLE DATA

CuM

PROPN
SURY
1.0000
0.9690
0,8580
0.6980
0.5620
0.4520
0.3510
0.2710
0.1980
0.1460
0.1020
0.0720
040650
0.0270
0.0160
0.0120
0.00%0
0.0030
0.0010

PROB
DENS

0.,0620
0.1110
0.1600
041360
0.1100
0.1010
0.0800
0.0730
0.0520
0.0440
00,0300
0.0270
0.0100
0.0110
0.0040
0.0070
0.0010
0.0020

6

HAZD
RAVE

0.0630
0.1217
0.2064
0.2167
0.2178
0.2529
0.2587
0.3139
03947
0.3586
03483
0.4700
0.5100
0.%232
0.2877
0.8755
0.2554
1.0986

e

ST ER
CUH
SURV

0.0

0.0055
0.0110
0.0145
0.01%7
0.0057
0.0151
0.0141
0.0126
0.0112
0.0096
0.0082
0.0066
0.0051
0.0040
0.0034
0.0022
0.0017
0.0010

CALCULATIONS INVOLVING INTERVAL WIOTH FOR LAST INTERVAL HAVE NO MEANING.

LN-LIKELIHOOD FOR SAMPLE DATA =

-3217.07

le5

ST ER
PROB
OENS

0.0110
00099
0.0116
0.0108
0.0099
0.0095
0.0086
0.0082
0.0070
0.006%
0.0054
0.0051
0.0042
0.003)
0.0020
0.0026
0.0007
0.0014

¢

ST ER
HAZD
RATE
0.0113
0.0116
0.0163
0.0186
0.0208
0.0252
0.0290
0.,06369
0.0424
0.0544
0.0639
0.0913
0.1217
0e1596
0.144)3
0.3416
0.1826
0.814%
[ 1]

MED
LIFE
EXPECY
4.0636
3. 7045
3. 2217
3.0250
2.0750
206164
24327
202306
201000
1.9667
17778
1.5000
1.4091
1.625%0
1.5714
0. 8571
2.25%00
0.7500

]

ST ER
LIFE
EXPECY
0.1437
0.1415
0.1450
0.1651
0.14082
Ge 1456
0.1801
0.1871
0e2345
0.2014
0.1870
0.23%7
043049
046495
0.2057
Qe 2474
0.5390
0.4330

¢

23



MODEL 1
MOOEL 2
MODEL 3
MODEL 4

EXPONENT IAL
LINEAR HAZARD

=

=

= GOMPERYZ
= WEIBULL

WEIGHTL(1

)= ],
WEIGHT2(1) = |,
WEIGHTA(1) = N{

LAMBDA-O
VARILANBDA-O)
STLERROR(LAM-O)
LANBDA-]
VARILAMBDA~-1)
ST.ERRORILAM=-1)
COVILAN~OyLAK=-1}
LN-LIKELIHOOD

INTERVAL START
0.0
0.50
1.50
2450
3.5%50
4.50
3.350
6.50
7.50
8.50
9.50

10.50
11.5%0
12.50
13.50
14,50
15.50
17.50
18.%0

0.0527

WY 2 WY 3
001630 0.2136
0.0000 0.0000
0.0059 000068

=2786423-2613.31~256%5.46

WY 1
0.3713
0.3713
0.3713
043713
0.3713
0.3713
0.3713
0.3713
0.3713
0.371)
0.3713
0.3713
0.3713
0.3713
0.3713
0.3713
0.3713
0.3713

"

MODEL 1

WY 2 NY 3
01630 0.2136
0.1630 0.2136
0.1630 0.2136
001630 0.2136
01630 0.2136
01630 0.2136
0.1630 0.2i36
0.1630 0.2136
001630 002136
0e1630 0.2136
01630 002136
0.1630 0.2136
0.1630 0,2136
021630 002136
001630 062136
0.1630 0.2136
01630 002136
0.1630 0.2136

(1] *¢

ESTIMATES OF PARAMETVERS

Wy 1
0¢ D651
0.0C79
0.00889
00356
0,0003
00162

MODEL 2
WY 2
0. 0875
0.0001
0. 0001
0.0320
0.0000
0. 0024

WY 3
0.1051
0.0001
0.0102
0.0292
0.0000
0.0029

~2510,34-2503,03~2503.68

HY 1
~2.0333
0.0126
0.1121
0.0983
0.0004
0.0198
=0.,0021

NODEL 3
uyY 2 HY 3
=1.9986 ~2.1576
0.0031 0.0040
040557 0.0635
0.1110 0.1363
0.0001 0.0001
0.0096 0.0110
=0.0004 ~-0.0006

=2516.52-2513.13-2%516.06

ESTIMATES OF HMAZARD FUNCTION

wy i
0.0740
0.1007
0.1363
0.171¢
0.2075
0.2432
0.2788
0.3144
0. 3500
030857
0.4213
0.4569
0.4925
0.5282
0.5638
0.5994
0.6%529
0. 7063

L L

MODEL 2
WY 2
0. 0953
0.1198
0.1515%
0.1039
0.2155
0.24175
0.279%
0.3114
0.3434
0.3734
0.4074
0.4394
0.4714
0. 5034
06 5354
0.5674
0. 6153
0,6633
[ 1 ]

L) 2 ]
Oell26
01343
041636
0.1928
0.2221
0.2513
0.2805
03098
003390
0.3683
063975
0.4268
0.4560
0.4852
05145
065437
0.5876
0.6315

[ 1 ]

NY 1
0.1342
0.1444
01594
0.1758
001940
0.2140
0.2362
002606
0.2875
0e.3172
03500
0.3861
0+4260
04701
0.5186
0.5722
0.66)32

07686
(1)

MODEL 3

wy 2 uyY 3
0.1393 0.1196
0.1514 0.1325%
0.1692 0.1518
0.1891 0.1740
0.2113 0.1994
002361 0.22083%
0.2638 0.2619
002947 0.3002
0.3293 0.3440
0.3680 0.3942
04112 0.4510
0.4594 0.5178
0.5133 0.5934
0.5736 0.6801
0.6409 0.7794
0.7161 0.8932
0.8459 1.0958
09991 1.3444

L 14 .

ur 1
0.0799
0.0001
0.0091
1.5160
0.0045
0.0672

«0.0006 -

HODEL 4

wuY 2 WY 3
0.0870 0.0859
0.0000 0.0001
0.0068 0.0076
L4656 01,4604
0.0014 000010
0.0369 0.0427
00002 ~0.,0003

=2497.30-2495.70-2495. 73

ur 1
0.0%92
0.4211
0.1732
0.213%
0.2476
0.2779
0.30%3
0.330%
0.3541
0.376%
0.3973
0.4174
0.4365
0.4549
0.4727
0.4898
0.5145
0.5301

o’

MODEL 4

Ny 2 WY 3
0.06049 0.0660
0.127% 0.1260
041760 0.1741
0.2126 0.2103
0.,2431 0,240%
0.2697 0.2669
02935 0.2906
0.3154 0.3122
03356 0,332
0.354% 0,3510
0.3723 0.3687
0.3892 0.3855
0.4053 0.4014
04207 004167
064354 0,434
0.4496 0,445
044700 0.4657

0.409% 0.48%0
[ 1] [ 1]

GeT



INTERVAL START
0.0
0.50
1.50
2.50
3.50
4.50
5.50
6450
7.%0
8.50
9.50
10.50
11.50
12.50
13.50
14.50
15.50

17.50
18.50

INTERVAL STARY
0.0
0.50
1.50
2.50
3.50
4.50
5.50
6.50
T7.50
8.50
9.50

10.50
11.50
12.50
13.50
14.50
15.50
17.50
18.50

WY 1
1.0000
0.8306
0.5729
03952
0.2726
0.t881
0.1297
0.0895
0.0617
0.0426
0.0294
0.0203
0.0140
0.0096
0.,0067
0.0046
0.0032
0.0015
1.0000

WY 1
0.3713
C.2561L
0e1767
0.1219
0.0841
0.0360
0.0400
0.0276
0.0190
0.0131
0.0091
0.0062
000043
0.0030
0.0021
0.0014
0.0008
0.0005

L

VODEL 1L

WY 2
1.0000
0.9217
0.7831
046653
05653
0.4803
0.4080
03467
0.2945
0.2502
0.2126
0.1806
0.1535
0.1304
0.1108
0.0941
0.0800
00577

HODEL 1
ur 2
0.1630
0.1385
0.1176
0.1000
0.0849
0.0721
0.0613
0.0521
0.0442
0.0376
00319
0.0271
0.0231
0.0196
0.0166
0.0141
0.0111
0.0087
*e

WY 3
1.0000
0.8987
0.725%8
05862
0. 4739
0.3824
0.3089
02495
0.201%
0. 1627
0.1314
0.1062
0.0857
0.0692
0.0559
0.04%2
0.0365
0.0238

ESTIMATES OF

uT 3
0.2136
0.1725
0.1393
0.1125
0.0909
0.0734
0.0%93
0.0479
0.0387
0.0312
0.0252
0.0204
0.0165
G.0133
0.0t07
0.0007
0.0063
0.0046

"

ESTIMAYES

HY 1
1.0000
09637
0.8714
0+ 7604
06402
0.5202
0.4079
0.3087
0.2254
0.1588
0.1080
0. 0709
0+ 0449
0.0274
0.0162
0.0092
0.0051
0.0014

ur 1
0. 0740
0. 0927
Oellie
0.120%
0.1203
0.1125
0. 0994
0.0833
040665
0. 0507
0.0370
0.0259
0.0174
0.0112
0.0069
0. 0041
0.0017
0.0007

*»

OF SURVIVORSHIP FUNCTION

MODEL 2
WY 2
1.0000
0.9534
048460
07270
0. 6052
0.4878
0.3809
0.2860
0.2110
0.1496
0.1028
0.0684
040441
0.0275
0. 0106
040097
0. 0045
0.0016

wr 3
1.0000
0.9454
09265
0.7018
05787
0.4635
0.3605
0.2723
0.1998
0.1423
0.0985
0.0662
0.0432
0.0274
0.0L168
0.0101
0.0058
0.0018

WY 1
1.0000
0.9351
0.8093
06900
0.5787
04767
0.3848
0.3038
0.2341
01756
0.1278
0.0901
0.0612
0.0400
0.0250
0.0149
0.0084
0.0022

MODEL 3
LAGK
1.0000
0.9327
0.8016
0+6767
05601
0.4534
0.3580
0.2750
0.2048
0.1473
0,1019
0.0675
0.0427
0.025%
0.0144
00076
0.0037
0.0007

PROBABELITY DENSITY FUNCTION

MOOEL 2
uY 2
000993
0.1078
0.1193
0.1222
0.1175
0.107L
0. 0929
0.07171
0.0613
0. 0407
000343
0.0242
0.0165
0.0108
0.0068
0.0042
0.0019
0.0008
[ 1

uY 3
0.1124
0.1192
0.1250
0.1233
0.115¢
0.1031)
0.0882
0.072%
0.0574
0.0438
0.0322
0.0229
0.,0157
0.0105
0.0067
0.0042
0.0019
0.0008

e

ur 1
0.1342
0.12%9
0.119%
Oellls
0.1021
0.0919
0.0810
0.0697
0.0509%
0.0477
00377
0.0288
0.0212
00149
0.0101
0.0006¢
0.0030
0.0012

*"

MNCOEL 3
Ny 2
0.1393
0e4382
0.1249
0.t1167
0.1060
0.0954
0.0831
0.0702
0.0574
0.0453
0.0343
0.0248
0.0171
0.0111
0.0067
0.0038
0.0014
0.0004
[ 1)

MY 3
1.0000
0.9419
0.8250
0.7087
045954
0.4877
0.3860
0.2965
0.2211
0.1567
01056
0.0672
0.0400
0.0221
0.0112
00051
0.0021
0.0002

“vr 3
0.1196
08170
0.1164
0.1134
0.1078
0.0998
0.0093
0.0775%
0.0644
0.0511
0.0304
0.0271
0.0178
0.0400
0.0060
0.0030
0.0008
0.0002

[ L]

Ny 1
10000
0.9725
0.08627
07258
05065
0.4579
03469
02556
0.1837
0.1289
00885
00595
040392
040253
0.0161
00100
0.0061
0.0022

“r 1
0.0592
03110
0.1378
0.1399
0.1284
o.t11Y
00912
0.0718
00546
00403
000289
0.0202
0.0138
000092
0.0060
9.0038
0.,0019
0.0009

(1]

MODEL 4
Wy 2
1.0000
0.9690
008542
07166
045795
0.4546
003472
0.,2589
0.1009
0.13%0
0. 0947
0.0653
000442
0.0298
0.0194
00129
0.0008
0.0038

RODEL 4
oy 2
0.0669
O.1169
0.1304
0e 1376
0.1252
0.1078
0.0002
0.0699
0.0337
0006002
0.0293
0.0210
0.0147
0.0101
0.0068
0,004
0.0024
0.0012
[ 1]

WY 3
1.0000
0.9694
0.08558
0.7194
0.50831
0.4385
0.3512
0.2626
0. 1922
0.1379
0. 0971
0.0671
040457
0.0306
0.0202
0.0131
0.0084
0.0033

9cT
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